1.402 problem 403

Internal problem ID [8739]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, linear first order
Problem number: 403.
ODE order: 1.
ODE degree: 2.

CAS Maple gives this as type [_quadrature]

\[ \boxed {a {y^{\prime }}^{2}+b y^{\prime }-y=0} \]

Solution by Maple

Time used: 0.61 (sec). Leaf size: 207

dsolve(a*diff(y(x),x)^2+b*diff(y(x),x)-y(x) = 0,y(x), singsol=all)
 

\begin{align*} y \left (x \right ) &= {\mathrm e}^{\frac {-b \operatorname {LambertW}\left (\frac {2 \,{\mathrm e}^{\frac {-c_{1} -b +x}{b}}}{b \sqrt {\frac {1}{a}}}\right )-b +x -c_{1}}{b}} \left (b \sqrt {\frac {1}{a}}+{\mathrm e}^{\frac {-b \operatorname {LambertW}\left (\frac {2 \,{\mathrm e}^{\frac {-c_{1} -b +x}{b}}}{b \sqrt {\frac {1}{a}}}\right )-b +x -c_{1}}{b}}\right ) \\ y \left (x \right ) &= \frac {b^{2} \left (\operatorname {LambertW}\left (-\frac {2 \sqrt {a}\, {\mathrm e}^{\frac {-c_{1} -b +x}{b}}}{b}\right )+2\right ) \operatorname {LambertW}\left (-\frac {2 \sqrt {a}\, {\mathrm e}^{\frac {-c_{1} -b +x}{b}}}{b}\right )}{4 a} \\ y \left (x \right ) &= \frac {b^{2} \left (\operatorname {LambertW}\left (\frac {2 \sqrt {a}\, {\mathrm e}^{\frac {-c_{1} -b +x}{b}}}{b}\right )+2\right ) \operatorname {LambertW}\left (\frac {2 \sqrt {a}\, {\mathrm e}^{\frac {-c_{1} -b +x}{b}}}{b}\right )}{4 a} \\ \end{align*}

Solution by Mathematica

Time used: 0.797 (sec). Leaf size: 123

DSolve[-y[x] + b*y'[x] + a*y'[x]^2==0,y[x],x,IncludeSingularSolutions -> True]
                                                                                    
                                                                                    
 

\begin{align*} y(x)\to \text {InverseFunction}\left [\frac {\sqrt {4 \text {$\#$1} a+b^2}+b \log \left (a \left (b-\sqrt {4 \text {$\#$1} a+b^2}\right )\right )}{2 a}\&\right ]\left [\frac {x}{2 a}+c_1\right ] \\ y(x)\to \text {InverseFunction}\left [\frac {\sqrt {4 \text {$\#$1} a+b^2}-b \log \left (\sqrt {4 \text {$\#$1} a+b^2}+b\right )}{2 a}\&\right ]\left [-\frac {x}{2 a}+c_1\right ] \\ y(x)\to 0 \\ \end{align*}