1.485 problem 487

Internal problem ID [8822]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, linear first order
Problem number: 487.
ODE order: 1.
ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

\[ \boxed {y^{2} {y^{\prime }}^{2}-6 y^{\prime } x^{3}+4 x^{2} y=0} \]

Solution by Maple

Time used: 0.203 (sec). Leaf size: 107

dsolve(y(x)^2*diff(y(x),x)^2-6*x^3*diff(y(x),x)+4*x^2*y(x) = 0,y(x), singsol=all)
 

\begin{align*} y \left (x \right ) &= \frac {18^{\frac {1}{3}} x^{\frac {4}{3}}}{2} \\ y \left (x \right ) &= -\frac {18^{\frac {1}{3}} x^{\frac {4}{3}} \left (1+i \sqrt {3}\right )}{4} \\ y \left (x \right ) &= \frac {18^{\frac {1}{3}} x^{\frac {4}{3}} \left (i \sqrt {3}-1\right )}{4} \\ y \left (x \right ) &= 0 \\ y \left (x \right ) &= \operatorname {RootOf}\left (-4 \ln \left (x \right )-3 \left (\int _{}^{\textit {\_Z}}\frac {4 \textit {\_a}^{3}+3 \sqrt {-4 \textit {\_a}^{3}+9}-9}{\textit {\_a} \left (4 \textit {\_a}^{3}-9\right )}d \textit {\_a} \right )+4 c_{1} \right ) x^{\frac {4}{3}} \\ \end{align*}

Solution by Mathematica

Time used: 2.383 (sec). Leaf size: 304

DSolve[4*x^2*y[x] - 6*x^3*y'[x] + y[x]^2*y'[x]^2==0,y[x],x,IncludeSingularSolutions -> True]
                                                                                    
                                                                                    
 

\begin{align*} \text {Solve}\left [\frac {\sqrt {9 x^6-4 x^2 y(x)^3} \log \left (\sqrt {9 x^4-4 y(x)^3}+3 x^2\right )}{2 x \sqrt {9 x^4-4 y(x)^3}}-\frac {3}{4} \left (\frac {\sqrt {9 x^6-4 x^2 y(x)^3} \log (y(x))}{x \sqrt {9 x^4-4 y(x)^3}}-\log (y(x))\right )&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {3}{4} \left (\frac {\sqrt {9 x^6-4 x^2 y(x)^3} \log (y(x))}{x \sqrt {9 x^4-4 y(x)^3}}+\log (y(x))\right )-\frac {\sqrt {9 x^6-4 x^2 y(x)^3} \log \left (\sqrt {9 x^4-4 y(x)^3}+3 x^2\right )}{2 x \sqrt {9 x^4-4 y(x)^3}}&=c_1,y(x)\right ] \\ y(x)\to \left (-\frac {3}{2}\right )^{2/3} x^{4/3} \\ y(x)\to \left (\frac {3}{2}\right )^{2/3} x^{4/3} \\ y(x)\to -\sqrt [3]{-1} \left (\frac {3}{2}\right )^{2/3} x^{4/3} \\ \end{align*}