1.569 problem 571

Internal problem ID [8906]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, linear first order
Problem number: 571.
ODE order: 1.
ODE degree: 0.

CAS Maple gives this as type [`y=_G(x,y')`]

\[ \boxed {a \,x^{n} f \left (y^{\prime }\right )+x y^{\prime }-y=0} \]

Solution by Maple

Time used: 0.843 (sec). Leaf size: 169

dsolve(a*x^n*f(diff(y(x),x))+x*diff(y(x),x)-y(x)=0,y(x), singsol=all)
 

\[ \left [y \left (\textit {\_T} \right ) = a {\left ({\left (\frac {\left (-n +1\right ) \left (\int f \left (\textit {\_T} \right )^{-\frac {1}{n}}d \textit {\_T} \right )+c_{1} a n}{a n f \left (\textit {\_T} \right )}\right )}^{\frac {1}{n -1}} f \left (\textit {\_T} \right )^{\frac {1}{n \left (n -1\right )}}\right )}^{n} f \left (\textit {\_T} \right )+{\left (\frac {\left (-n +1\right ) \left (\int f \left (\textit {\_T} \right )^{-\frac {1}{n}}d \textit {\_T} \right )+c_{1} a n}{a n f \left (\textit {\_T} \right )}\right )}^{\frac {1}{n -1}} f \left (\textit {\_T} \right )^{\frac {1}{n \left (n -1\right )}} \textit {\_T}, x \left (\textit {\_T} \right ) = {\left (\frac {\left (-n +1\right ) \left (\int f \left (\textit {\_T} \right )^{-\frac {1}{n}}d \textit {\_T} \right )+c_{1} a n}{a n f \left (\textit {\_T} \right )}\right )}^{\frac {1}{n -1}} f \left (\textit {\_T} \right )^{\frac {1}{n \left (n -1\right )}}\right ] \]

Solution by Mathematica

Time used: 0.117 (sec). Leaf size: 124

DSolve[a*x^n*f[y'[x]] - y[x] + x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
                                                                                    
                                                                                    
 

\[ \text {Solve}\left [\left \{y(x)=a x^n f(K[1])+x K[1],x=\left (n f(K[1])^{\frac {1}{n}-1} \int _1^{K[1]}-\frac {f(K[2])^{\frac {n-1}{n}-1}}{a n}dK[2]-f(K[1])^{\frac {1}{n}-1} \int _1^{K[1]}-\frac {f(K[2])^{\frac {n-1}{n}-1}}{a n}dK[2]+c_1 f(K[1])^{\frac {1}{n}-1}\right ){}^{\frac {1}{n-1}}\right \},\{y(x),K[1]\}\right ] \]