2.347 problem 924

Internal problem ID [9258]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, Additional non-linear first order
Problem number: 924.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [NONE]

\[ \boxed {y^{\prime }+\frac {\left (-\frac {\ln \left (y\right )^{2}}{2 x}-f_{1} \left (x \right )\right ) y}{\ln \left (y\right )}=0} \]

Solution by Maple

Time used: 0.031 (sec). Leaf size: 46

dsolve(diff(y(x),x) = -(-1/2*ln(y(x))^2/x-_F1(x))/ln(y(x))*y(x),y(x), singsol=all)
 

\begin{align*} y \left (x \right ) &= {\mathrm e}^{\sqrt {2}\, \sqrt {x \left (\int \frac {f_{1} \left (x \right )}{x}d x +c_{1} \right )}} \\ y \left (x \right ) &= {\mathrm e}^{-\sqrt {2}\, \sqrt {x \left (\int \frac {f_{1} \left (x \right )}{x}d x +c_{1} \right )}} \\ \end{align*}

Solution by Mathematica

Time used: 0.302 (sec). Leaf size: 79

DSolve[y'[x] == ((F1[x] + Log[y[x]]^2/(2*x))*y[x])/Log[y[x]],y[x],x,IncludeSingularSolutions -> True]
                                                                                    
                                                                                    
 

\[ \text {Solve}\left [\int _1^x\left (-\frac {\log ^2(y(x))}{2 K[1]^2}-\frac {\text {F1}(K[1])}{K[1]}\right )dK[1]+\int _1^{y(x)}\left (\frac {\log (K[2])}{x K[2]}-\int _1^x-\frac {\log (K[2])}{K[1]^2 K[2]}dK[1]\right )dK[2]=c_1,y(x)\right ] \]