2.52 problem 51

Internal problem ID [7188]

Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 51.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

\[ \boxed {y^{\prime \prime }-y^{\prime } x^{3}-x^{2} y=x^{3}} \]

Solution by Maple

Time used: 0.047 (sec). Leaf size: 28

dsolve(diff(y(x),x$2)-x^3*diff(y(x),x)-x^2*y(x)-x^3=0,y(x), singsol=all)
 

\[ y \left (x \right ) = x \left (\operatorname {KummerU}\left (\frac {1}{2}, \frac {5}{4}, \frac {x^{4}}{4}\right ) c_{1} +\operatorname {KummerM}\left (\frac {1}{2}, \frac {5}{4}, \frac {x^{4}}{4}\right ) c_{2} -\frac {1}{2}\right ) \]

Solution by Mathematica

Time used: 1.216 (sec). Leaf size: 337

DSolve[y''[x]-x^3*y'[x]-x^2*y[x]-x^3==0,y[x],x,IncludeSingularSolutions -> True]
                                                                                    
                                                                                    
 

\[ y(x)\to \operatorname {Hypergeometric1F1}\left (\frac {1}{4},\frac {3}{4},\frac {x^4}{4}\right ) \int _1^x\frac {15 \operatorname {Hypergeometric1F1}\left (\frac {1}{2},\frac {5}{4},\frac {K[1]^4}{4}\right ) K[1]^4}{5 \operatorname {Hypergeometric1F1}\left (\frac {1}{2},\frac {5}{4},\frac {K[1]^4}{4}\right ) \operatorname {Hypergeometric1F1}\left (\frac {5}{4},\frac {7}{4},\frac {K[1]^4}{4}\right ) K[1]^4-3 \operatorname {Hypergeometric1F1}\left (\frac {1}{4},\frac {3}{4},\frac {K[1]^4}{4}\right ) \left (2 \operatorname {Hypergeometric1F1}\left (\frac {3}{2},\frac {9}{4},\frac {K[1]^4}{4}\right ) K[1]^4+5 \operatorname {Hypergeometric1F1}\left (\frac {1}{2},\frac {5}{4},\frac {K[1]^4}{4}\right )\right )}dK[1]+\frac {\sqrt [4]{-1} x \operatorname {Hypergeometric1F1}\left (\frac {1}{2},\frac {5}{4},\frac {x^4}{4}\right ) \int _1^x\frac {(15-15 i) \operatorname {Hypergeometric1F1}\left (\frac {1}{4},\frac {3}{4},\frac {K[2]^4}{4}\right ) K[2]^3}{3 \operatorname {Hypergeometric1F1}\left (\frac {1}{4},\frac {3}{4},\frac {K[2]^4}{4}\right ) \left (2 \operatorname {Hypergeometric1F1}\left (\frac {3}{2},\frac {9}{4},\frac {K[2]^4}{4}\right ) K[2]^4+5 \operatorname {Hypergeometric1F1}\left (\frac {1}{2},\frac {5}{4},\frac {K[2]^4}{4}\right )\right )-5 \operatorname {Hypergeometric1F1}\left (\frac {1}{2},\frac {5}{4},\frac {K[2]^4}{4}\right ) \operatorname {Hypergeometric1F1}\left (\frac {5}{4},\frac {7}{4},\frac {K[2]^4}{4}\right ) K[2]^4}dK[2]}{\sqrt {2}}+c_1 \operatorname {Hypergeometric1F1}\left (\frac {1}{4},\frac {3}{4},\frac {x^4}{4}\right )+\left (\frac {1}{2}+\frac {i}{2}\right ) c_2 x \operatorname {Hypergeometric1F1}\left (\frac {1}{2},\frac {5}{4},\frac {x^4}{4}\right ) \]