6.9 problem 26

Internal problem ID [10474]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-2. Equations with hyperbolic tangent and cotangent.
Problem number: 26.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Riccati]

\[ \boxed {y^{\prime }-y^{2}=-2 \tanh \left (\lambda x \right )^{2} \lambda ^{2}-2 \lambda ^{2} \coth \left (\lambda x \right )^{2}} \]

Solution by Maple

Time used: 0.0 (sec). Leaf size: 143

dsolve(diff(y(x),x)=y(x)^2-2*lambda^2*tanh(lambda*x)^2-2*lambda^2*coth(lambda*x)^2,y(x), singsol=all)
 

\[ y \left (x \right ) = \frac {2 \left (-\frac {1}{2}+c_{1} \left (-\cosh \left (x \lambda \right )^{2}+\frac {1}{2}\right ) \ln \left (\coth \left (x \lambda \right )-1\right )+c_{1} \left (\cosh \left (x \lambda \right )^{2}-\frac {1}{2}\right ) \ln \left (\coth \left (x \lambda \right )+1\right )+4 \cosh \left (x \lambda \right )^{5} c_{1} \sinh \left (x \lambda \right )-4 \cosh \left (x \lambda \right )^{3} c_{1} \sinh \left (x \lambda \right )-\sinh \left (x \lambda \right ) \cosh \left (x \lambda \right ) c_{1} +\cosh \left (x \lambda \right )^{2}\right ) \lambda \,\operatorname {csch}\left (x \lambda \right ) \operatorname {sech}\left (x \lambda \right )}{-4 \cosh \left (x \lambda \right )^{3} c_{1} \sinh \left (x \lambda \right )+2 \sinh \left (x \lambda \right ) \cosh \left (x \lambda \right ) c_{1} +\ln \left (\coth \left (x \lambda \right )+1\right ) c_{1} -\ln \left (\coth \left (x \lambda \right )-1\right ) c_{1} +1} \]

Solution by Mathematica

Time used: 7.989 (sec). Leaf size: 132

DSolve[y'[x]==y[x]^2-2*\[Lambda]^2*Tanh[\[Lambda]*x]^2-2*\[Lambda]^2*Coth[\[Lambda]*x]^2,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to -\frac {2 \lambda \left (e^{12 \lambda x}+2 e^{4 \lambda x} \left (e^{4 \lambda x}+1\right ) \log \left (e^{4 \lambda x}\right )+(-7+c_1) \left (-e^{4 \lambda x}\right )-(7+c_1) e^{8 \lambda x}-1\right )}{\left (e^{4 \lambda x}-1\right ) \left (e^{8 \lambda x}-2 e^{4 \lambda x} \log \left (e^{4 \lambda x}\right )+c_1 e^{4 \lambda x}-1\right )} \\ y(x)\to \frac {2 \lambda \left (e^{4 \lambda x}+1\right )}{e^{4 \lambda x}-1} \\ \end{align*}