# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime }+y = \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -3 y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x y \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = x^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y \] |
✓ |
✗ |
|
\[ {}x^{2} y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{x} = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{x} = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x -y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x -y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 x y^{\prime }-y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-x^{2} y = 1 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (p +\frac {1}{2}-\frac {x^{2}}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+p^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 x y^{\prime }+2 p y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} \left (-1+x \right ) y^{\prime \prime }-2 \left (-1+x \right ) y^{\prime }+3 x y = 0 \] |
✓ |
✗ |
|
\[ {}x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \] |
✓ |
✗ |
|
\[ {}\left (3 x +1\right ) x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y \sin \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y \sin \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+y \sin \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime }+y \sin \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime }+y \sin \left (x \right ) = 0 \] |
✓ |
✗ |
|
\[ {}x^{3} y^{\prime \prime }+\left (-1+\cos \left (2 x \right )\right ) y^{\prime }+2 x y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime }-4 x^{2} y^{\prime }+3 x y = 0 \] |
✓ |
✓ |
|
\[ {}4 x y^{\prime \prime }+3 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-\left (1+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \] |
✓ |
✗ |
|
\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \] |
✓ |
✗ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (4 x +4\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-1+x \right )^{2} y^{\prime \prime }-3 \left (-1+x \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}3 \left (1+x \right )^{2} y^{\prime \prime }-\left (1+x \right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (2 x^{2}+2 x \right ) y^{\prime \prime }+\left (1+5 x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-x -6\right ) y^{\prime \prime }+\left (3 x +5\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+p^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-{\mathrm e}^{x}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{2}+{\mathrm e}^{x} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 x y = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }+y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = x^{3}-x \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }+x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+4\right ) y^{\prime \prime }-y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\left (1+x \right ) y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-1+x \right ) y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) x^{2} y^{\prime \prime }-x y^{\prime }+\left (2+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (1+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-4 y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+4 x^{2} y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (-1+x \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (-1+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}9 \left (-2+x \right )^{2} \left (x -3\right ) y^{\prime \prime }+6 x \left (-2+x \right ) y^{\prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+p \left (p +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 5 \,{\mathrm e}^{3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-6 y = t \] |
✓ |
✓ |
|