4.65 Problems 6401 to 6500

Table 4.129: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

6401

\[ {}y^{\prime }+y = \cos \left (x \right ) \]

6402

\[ {}y^{\prime \prime } = -3 y \]

6403

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]

6404

\[ {}y^{\prime } = 2 x y \]

6405

\[ {}y^{\prime } = 2 x y \]

6406

\[ {}y^{\prime }+y = 1 \]

6407

\[ {}y^{\prime }+y = 1 \]

6408

\[ {}y^{\prime }-y = 2 \]

6409

\[ {}y^{\prime }-y = 2 \]

6410

\[ {}y^{\prime }+y = 0 \]

6411

\[ {}y^{\prime }+y = 0 \]

6412

\[ {}y^{\prime }-y = 0 \]

6413

\[ {}y^{\prime }-y = 0 \]

6414

\[ {}y^{\prime }-y = x^{2} \]

6415

\[ {}y^{\prime }-y = x^{2} \]

6416

\[ {}x y^{\prime } = y \]

6417

\[ {}x y^{\prime } = y \]

6418

\[ {}x^{2} y^{\prime } = y \]

6419

\[ {}x^{2} y^{\prime } = y \]

6420

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

6421

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

6422

\[ {}y^{\prime }+\frac {y}{x} = x \]

6423

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]

6424

\[ {}y^{\prime } = y+1 \]

6425

\[ {}y^{\prime } = x -y \]

6426

\[ {}y^{\prime } = x -y \]

6427

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

6428

\[ {}y^{\prime \prime }-y^{\prime }+x y = 0 \]

6429

\[ {}y^{\prime \prime }+2 x y^{\prime }-y = x \]

6430

\[ {}y^{\prime \prime }+y^{\prime }-x^{2} y = 1 \]

6431

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

6432

\[ {}y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = 0 \]

6433

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

6434

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

6435

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]

6436

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]

6437

\[ {}y^{\prime \prime }+\left (p +\frac {1}{2}-\frac {x^{2}}{4}\right ) y = 0 \]

6438

\[ {}y^{\prime \prime }+x y = 0 \]

6439

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+p^{2} y = 0 \]

6440

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 p y = 0 \]

6441

\[ {}x^{3} \left (-1+x \right ) y^{\prime \prime }-2 \left (-1+x \right ) y^{\prime }+3 x y = 0 \]

6442

\[ {}x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y = 0 \]

6443

\[ {}x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

6444

\[ {}\left (3 x +1\right ) x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+2 y = 0 \]

6445

\[ {}y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

6446

\[ {}x y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

6447

\[ {}x^{2} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

6448

\[ {}x^{3} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

6449

\[ {}x^{4} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

6450

\[ {}x^{3} y^{\prime \prime }+\left (-1+\cos \left (2 x \right )\right ) y^{\prime }+2 x y = 0 \]

6451

\[ {}4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y = 0 \]

6452

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x y = 0 \]

6453

\[ {}x^{3} y^{\prime \prime }-4 x^{2} y^{\prime }+3 x y = 0 \]

6454

\[ {}4 x y^{\prime \prime }+3 y^{\prime }+y = 0 \]

6455

\[ {}2 x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y = 0 \]

6456

\[ {}2 x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+3 y = 0 \]

6457

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-\left (1+x \right ) y = 0 \]

6458

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

6459

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

6460

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

6461

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (4 x +4\right ) y = 0 \]

6462

\[ {}4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y = 0 \]

6463

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

6464

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

6465

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

6466

\[ {}\left (-1+x \right )^{2} y^{\prime \prime }-3 \left (-1+x \right ) y^{\prime }+2 y = 0 \]

6467

\[ {}3 \left (1+x \right )^{2} y^{\prime \prime }-\left (1+x \right ) y^{\prime }-y = 0 \]

6468

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

6469

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

6470

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y = 0 \]

6471

\[ {}\left (2 x^{2}+2 x \right ) y^{\prime \prime }+\left (1+5 x \right ) y^{\prime }+y = 0 \]

6472

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y = 0 \]

6473

\[ {}\left (x^{2}-x -6\right ) y^{\prime \prime }+\left (3 x +5\right ) y^{\prime }+y = 0 \]

6474

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+p^{2} y = 0 \]

6475

\[ {}\left (-{\mathrm e}^{x}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{2}+{\mathrm e}^{x} y = 0 \]

6476

\[ {}y^{\prime \prime }+2 x y = x^{2} \]

6477

\[ {}y^{\prime \prime }-x y^{\prime }+y = x \]

6478

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{3}-x \]

6479

\[ {}2 y^{\prime \prime }+x y^{\prime }+y = 0 \]

6480

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }-y^{\prime }+y = 0 \]

6481

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

6482

\[ {}y^{\prime \prime }-\left (1+x \right ) y^{\prime }-x y = 0 \]

6483

\[ {}\left (-1+x \right ) y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 0 \]

6484

\[ {}\left (x^{2}+1\right ) x^{2} y^{\prime \prime }-x y^{\prime }+\left (2+x \right ) y = 0 \]

6485

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (1+x \right ) y = 0 \]

6486

\[ {}x y^{\prime \prime }-4 y^{\prime }+x y = 0 \]

6487

\[ {}4 x^{2} y^{\prime \prime }+4 x^{2} y^{\prime }+2 y = 0 \]

6488

\[ {}2 x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

6489

\[ {}x y^{\prime \prime }-\left (-1+x \right ) y^{\prime }+2 y = 0 \]

6490

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y = 0 \]

6491

\[ {}x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 0 \]

6492

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+x y = 0 \]

6493

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (-1+x \right ) y = 0 \]

6494

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-x y = 0 \]

6495

\[ {}x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

6496

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

6497

\[ {}9 \left (-2+x \right )^{2} \left (x -3\right ) y^{\prime \prime }+6 x \left (-2+x \right ) y^{\prime }+16 y = 0 \]

6498

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+p \left (p +1\right ) y = 0 \]

6499

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 5 \,{\mathrm e}^{3 t} \]

6500

\[ {}y^{\prime \prime }+y^{\prime }-6 y = t \]