4.67 Problems 6601 to 6700

Table 4.133: Main lookup table sequentially arranged




#

ODE

Mathematica

Maple





6601

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]





6602

\[ {}3 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]





6603

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {2}{9}\right ) y = 0 \]





6604

\[ {}2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0 \]





6605

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {4}{9}\right ) y = 0 \]





6606

\[ {}9 x^{2} y^{\prime \prime }+9 x^{2} y^{\prime }+2 y = 0 \]





6607

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (2 x -1\right ) y = 0 \]





6608

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]





6609

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]





6610

\[ {}x y^{\prime \prime }-x y^{\prime }+y = 0 \]





6611

\[ {}y^{\prime \prime }+\frac {3 y^{\prime }}{x}-2 y = 0 \]





6612

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = 0 \]





6613

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]





6614

\[ {}x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \]





6615

\[ {}x \left (-1+x \right ) y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]





6616

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{t}+\lambda y = 0 \]





6617

\[ {}x^{3} y^{\prime \prime }+y = 0 \]





6618

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]





6619

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]





6620

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]





6621

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-25\right ) y = 0 \]





6622

\[ {}16 x^{2} y^{\prime \prime }+16 x y^{\prime }+\left (16 x^{2}-1\right ) y = 0 \]





6623

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]





6624

\[ {}x y^{\prime \prime }+y^{\prime }+\left (x -\frac {4}{x}\right ) y = 0 \]





6625

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-4\right ) y = 0 \]





6626

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]





6627

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]





6628

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-64\right ) y = 0 \]





6629

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]





6630

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]





6631

\[ {}x y^{\prime \prime }-y^{\prime }+x y = 0 \]





6632

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]





6633

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]





6634

\[ {}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \]





6635

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]





6636

\[ {}9 x^{2} y^{\prime \prime }+9 x y^{\prime }+\left (x^{6}-36\right ) y = 0 \]





6637

\[ {}y^{\prime \prime }-x^{2} y = 0 \]





6638

\[ {}x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0 \]





6639

\[ {}y^{\prime \prime }+y = 0 \]





6640

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]





6641

\[ {}16 x^{2} y^{\prime \prime }+32 x y^{\prime }+\left (x^{4}-12\right ) y = 0 \]





6642

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (16 x^{2}+3\right ) y = 0 \]





6643

\[ {}2 x y^{\prime \prime }+y^{\prime }+y = 0 \]





6644

\[ {}y^{\prime \prime }-x y^{\prime }-y = 0 \]





6645

\[ {}\left (-1+x \right ) y^{\prime \prime }+3 y = 0 \]





6646

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = 0 \]





6647

\[ {}x y^{\prime \prime }-\left (2+x \right ) y^{\prime }+2 y = 0 \]





6648

\[ {}\cos \left (x \right ) y^{\prime \prime }+y = 0 \]





6649

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]





6650

\[ {}\left (2+x \right ) y^{\prime \prime }+3 y = 0 \]





6651

\[ {}\left (1-2 \sin \left (x \right )\right ) y^{\prime \prime }+x y = 0 \]





6652

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]





6653

\[ {}x y^{\prime \prime }+\left (1-\cos \left (x \right )\right ) y^{\prime }+x^{2} y = 0 \]





6654

\[ {}\left ({\mathrm e}^{x}-1-x \right ) y^{\prime \prime }+x y = 0 \]





6655

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 10 x^{3}-2 x +5 \]





6656

\[ {}y^{\prime }-y = 1 \]





6657

\[ {}2 y^{\prime }+y = 0 \]





6658

\[ {}y^{\prime }+6 y = {\mathrm e}^{4 t} \]





6659

\[ {}y^{\prime }-y = 2 \cos \left (5 t \right ) \]





6660

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 0 \]





6661

\[ {}y^{\prime \prime }-4 y^{\prime } = 6 \,{\mathrm e}^{3 t}-3 \,{\mathrm e}^{-t} \]





6662

\[ {}y^{\prime \prime }+y = \sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \]





6663

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{t} \]





6664

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }-3 y^{\prime }-2 y = {\mathrm e}^{-t} \]





6665

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = \sin \left (3 t \right ) \]





6666

\[ {}y^{\prime }+y = {\mathrm e}^{-3 t} \cos \left (2 t \right ) \]





6667

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]





6668

\[ {}y^{\prime }+4 y = {\mathrm e}^{-4 t} \]





6669

\[ {}y^{\prime }-y = 1+t \,{\mathrm e}^{t} \]





6670

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]





6671

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3} {\mathrm e}^{2 t} \]





6672

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \]





6673

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3} \]





6674

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]





6675

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]





6676

\[ {}y^{\prime \prime }-y = {\mathrm e}^{t} \cos \left (t \right ) \]





6677

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = t +1 \]





6678

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]





6679

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = 0 \]





6680

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 5 & 1\le t \end {array}\right . \]





6681

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]





6682

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]





6683

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]





6684

\[ {}y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]





6685

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \operatorname {Heaviside}\left (-1+t \right ) \]





6686

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]





6687

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 1-\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -4\right )+\operatorname {Heaviside}\left (t -6\right ) \]





6688

\[ {}y^{\prime }+y = t \sin \left (t \right ) \]





6689

\[ {}y^{\prime }-y = t \,{\mathrm e}^{t} \sin \left (t \right ) \]





6690

\[ {}y^{\prime \prime }+9 y = \cos \left (3 t \right ) \]





6691

\[ {}y^{\prime \prime }+y = \sin \left (t \right ) \]





6692

\[ {}y^{\prime \prime }+16 y = \left \{\begin {array}{cc} \cos \left (4 t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]





6693

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ \sin \left (t \right ) & \frac {\pi }{2}\le t \end {array}\right . \]





6694

\[ {}t y^{\prime \prime }-y^{\prime } = 2 t^{2} \]





6695

\[ {}2 y^{\prime \prime }+t y^{\prime }-2 y = 10 \]





6696

\[ {}y^{\prime \prime }+y = \sin \left (t \right )+t \sin \left (t \right ) \]





6697

\[ {}y^{\prime }-3 y = \delta \left (t -2\right ) \]





6698

\[ {}y^{\prime }+y = \delta \left (-1+t \right ) \]





6699

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \]





6700

\[ {}y^{\prime \prime }+16 y = \delta \left (t -2 \pi \right ) \]