4.118 Problems 11701 to 11800

Table 4.235: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

11701

\[ {}\left (1+x \right ) y^{2}+y+\left (2 x y+1\right ) y^{\prime } = 0 \]

11702

\[ {}2 x y^{2}+y+\left (2 y^{3}-x \right ) y^{\prime } = 0 \]

11703

\[ {}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0 \]

11704

\[ {}8 x^{2} y^{3}-2 y^{4}+\left (5 x^{3} y^{2}-8 x y^{3}\right ) y^{\prime } = 0 \]

11705

\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \]

11706

\[ {}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0 \]

11707

\[ {}x -2 y-3+\left (2 x +y-1\right ) y^{\prime } = 0 \]

11708

\[ {}10 x -4 y+12-\left (x +5 y+3\right ) y^{\prime } = 0 \]

11709

\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \]

11710

\[ {}3 x -y-6+\left (x +y+2\right ) y^{\prime } = 0 \]

11711

\[ {}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0 \]

11712

\[ {}4 x +3 y+1+\left (1+x +y\right ) y^{\prime } = 0 \]

11713

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x} \]

11714

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x} \]

11715

\[ {}y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

11716

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

11717

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

11718

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

11719

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

11720

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

11721

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0 \]

11722

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 0 \]

11723

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

11724

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-3 \left (1+x \right ) y^{\prime }+3 y = 0 \]

11725

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

11726

\[ {}\left (x^{2}-x +1\right ) y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+\left (1+x \right ) y = 0 \]

11727

\[ {}\left (2 x +1\right ) y^{\prime \prime }-4 \left (1+x \right ) y^{\prime }+4 y = 0 \]

11728

\[ {}\left (x^{3}-x^{2}\right ) y^{\prime \prime }-\left (x^{3}+2 x^{2}-2 x \right ) y^{\prime }+\left (2 x^{2}+2 x -2\right ) y = 0 \]

11729

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2} \]

11730

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2-12 x +6 \,{\mathrm e}^{x} \]

11731

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

11732

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

11733

\[ {}4 y^{\prime \prime }-12 y^{\prime }+5 y = 0 \]

11734

\[ {}3 y^{\prime \prime }-14 y^{\prime }-5 y = 0 \]

11735

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

11736

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0 \]

11737

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

11738

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

11739

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

11740

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = 0 \]

11741

\[ {}y^{\prime \prime }+9 y = 0 \]

11742

\[ {}4 y^{\prime \prime }+y = 0 \]

11743

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 0 \]

11744

\[ {}4 y^{\prime \prime \prime }+4 y^{\prime \prime }-7 y^{\prime }+2 y = 0 \]

11745

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

11746

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

11747

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

11748

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

11749

\[ {}y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

11750

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime }+2 y = 0 \]

11751

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime }+12 y = 0 \]

11752

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+15 y^{\prime \prime }+20 y^{\prime }+12 y = 0 \]

11753

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

11754

\[ {}y^{\left (5\right )} = 0 \]

11755

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

11756

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

11757

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = 0 \]

11758

\[ {}3 y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]

11759

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

11760

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

11761

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

11762

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]

11763

\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

11764

\[ {}y^{\prime \prime }+6 y^{\prime }+58 y = 0 \]

11765

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

11766

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

11767

\[ {}9 y^{\prime \prime }+6 y^{\prime }+5 y = 0 \]

11768

\[ {}4 y^{\prime \prime }+4 y^{\prime }+37 y = 0 \]

11769

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

11770

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

11771

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0 \]

11772

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+9 y^{\prime }-5 y = 0 \]

11773

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+6 y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

11774

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }+13 y^{\prime }+30 y = 0 \]

11775

\[ {}y^{\prime \prime }-3 y^{\prime }+8 y = 4 x^{2} \]

11776

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 4 \,{\mathrm e}^{2 x}-21 \,{\mathrm e}^{-3 x} \]

11777

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 6 \sin \left (2 x \right )+7 \cos \left (2 x \right ) \]

11778

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \sin \left (4 x \right ) \]

11779

\[ {}y^{\prime \prime }+2 y^{\prime }+4 y = \cos \left (4 x \right ) \]

11780

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 16 x -12 \,{\mathrm e}^{2 x} \]

11781

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = 2 \,{\mathrm e}^{x}+10 \,{\mathrm e}^{5 x} \]

11782

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 5 \,{\mathrm e}^{-2 x} x \]

11783

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+y^{\prime }-6 y = -18 x^{2}+1 \]

11784

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-3 y^{\prime }-10 y = 8 \,{\mathrm e}^{-2 x} x \]

11785

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+3 y^{\prime }-5 y = 5 \sin \left (2 x \right )+10 x^{2}+3 x +7 \]

11786

\[ {}4 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+3 y = 3 x^{3}-8 x \]

11787

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 10 \,{\mathrm e}^{2 x}-18 \,{\mathrm e}^{3 x}-6 x -11 \]

11788

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x}-4 x^{2} \]

11789

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 4 \,{\mathrm e}^{x}-18 \,{\mathrm e}^{-x} \]

11790

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 9 \,{\mathrm e}^{2 x}-8 \,{\mathrm e}^{3 x} \]

11791

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 x^{2}+4 \sin \left (x \right ) \]

11792

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 3 \,{\mathrm e}^{-x}+6 \,{\mathrm e}^{2 x}-6 x \]

11793

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{4 x} \]

11794

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 3 \,{\mathrm e}^{x} x^{2}-7 \,{\mathrm e}^{x} \]

11795

\[ {}y^{\prime \prime }+y = x \sin \left (x \right ) \]

11796

\[ {}y^{\prime \prime }+4 y = 12 x^{2}-16 x \cos \left (2 x \right ) \]

11797

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime } = 18 x^{2}+16 x \,{\mathrm e}^{x}+4 \,{\mathrm e}^{3 x}-9 \]

11798

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+7 y^{\prime \prime }-5 y^{\prime }+6 y = 5 \sin \left (x \right )-12 \sin \left (2 x \right ) \]

11799

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]

11800

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 16 x +20 \,{\mathrm e}^{x} \]