4.141 Problems 14001 to 14100

Table 4.281: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

14001

\[ {}\left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0 \]

14002

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{2+x}+y = 0 \]

14003

\[ {}4 y^{\prime \prime }+\frac {\left (4 x -3\right ) y}{\left (-1+x \right )^{2}} = 0 \]

14004

\[ {}\left (x -3\right )^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }-3 y = 0 \]

14005

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (-x^{2}+2\right ) y = 0 \]

14006

\[ {}x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

14007

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

14008

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+\left (4 x^{2}+5 x \right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

14009

\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+9 y = 0 \]

14010

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x y^{\prime }+\left (4 x^{3}-4\right ) y = 0 \]

14011

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+\left (1-4 x \right ) y = 0 \]

14012

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (2 x +1\right ) y = 0 \]

14013

\[ {}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (2+x \right )^{2}} = 0 \]

14014

\[ {}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (2+x \right )^{2}} = 0 \]

14015

\[ {}\left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0 \]

14016

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+3 y = 0 \]

14017

\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

14018

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

14019

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0 \]

14020

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x -4\right ) y = 0 \]

14021

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = 1-2 x \left (t \right )] \]

14022

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 6 x \left (t \right )-7 y \left (t \right )] \]

14023

\[ {}[t x^{\prime }\left (t \right )+2 x \left (t \right ) = 15 y \left (t \right ), t y^{\prime }\left (t \right ) = x \left (t \right )] \]

14024

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )-2 y \left (t \right )] \]

14025

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )+y \left (t \right )] \]

14026

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )] \]

14027

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )-2 y \left (t \right )] \]

14028

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )] \]

14029

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )] \]

14030

\[ {}[x^{\prime }\left (t \right ) = -2 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )] \]

14031

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-13 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

14032

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )] \]

14033

\[ {}[x^{\prime }\left (t \right ) = 8 x \left (t \right )+2 y \left (t \right )-17, y^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right )-13] \]

14034

\[ {}[x^{\prime }\left (t \right ) = 8 x \left (t \right )+2 y \left (t \right )+7 \,{\mathrm e}^{2 t}, y^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right )-7 \,{\mathrm e}^{2 t}] \]

14035

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )+3 y \left (t \right )-6 \,{\mathrm e}^{3 t}, y^{\prime }\left (t \right ) = x \left (t \right )+6 y \left (t \right )+2 \,{\mathrm e}^{3 t}] \]

14036

\[ {}[x^{\prime }\left (t \right ) = -y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+24 t] \]

14037

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-13 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+19 \cos \left (4 t \right )-13 \sin \left (4 t \right )] \]

14038

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )+3 y \left (t \right )+5 \operatorname {Heaviside}\left (t -2\right ), y^{\prime }\left (t \right ) = x \left (t \right )+6 y \left (t \right )+17 \operatorname {Heaviside}\left (t -2\right )] \]

14039

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )+y \left (t \right )] \]

14040

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-7 y \left (t \right )] \]

14041

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right )+4, y^{\prime }\left (t \right ) = 3 x \left (t \right )-7 y \left (t \right )+5] \]

14042

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 6 x \left (t \right )+2 y \left (t \right )] \]

14043

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-5] \]

14044

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )] \]

14045

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x^{3} \]

14046

\[ {}y y^{\prime }+y^{4} = \sin \left (x \right ) \]

14047

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y = {\mathrm e}^{x} \]

14048

\[ {}{y^{\prime }}^{2}+y = 0 \]

14049

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

14050

\[ {}x {y^{\prime \prime }}^{2}+2 y = 2 x \]

14051

\[ {}x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]

14052

\[ {}2 x -1-y^{\prime } = 0 \]

14053

\[ {}2 x -y-y y^{\prime } = 0 \]

14054

\[ {}y^{\prime }+2 y = 0 \]

14055

\[ {}y^{\prime }+x y = 0 \]

14056

\[ {}y^{\prime }+y = \sin \left (x \right ) \]

14057

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

14058

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

14059

\[ {}x^{\prime \prime }+2 x^{\prime }-10 x = 0 \]

14060

\[ {}x^{\prime \prime }+x = t \cos \left (t \right )-\cos \left (t \right ) \]

14061

\[ {}y^{\prime \prime }-12 y^{\prime }+40 y = 0 \]

14062

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = 0 \]

14063

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

14064

\[ {}x^{2} y^{\prime \prime }-12 x y^{\prime }+42 y = 0 \]

14065

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0 \]

14066

\[ {}y^{\prime } = -\frac {x}{y} \]

14067

\[ {}3 y \left (t^{2}+y\right )+t \left (t^{2}+6 y\right ) y^{\prime } = 0 \]

14068

\[ {}y^{\prime } = -\frac {2 y}{x}-3 \]

14069

\[ {}y \cos \left (t \right )+\left (2 y+\sin \left (t \right )\right ) y^{\prime } = 0 \]

14070

\[ {}\frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0 \]

14071

\[ {}y^{\prime } = \left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \]

14072

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]

14073

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]

14074

\[ {}y^{\prime } = \frac {1}{x \ln \left (x \right )} \]

14075

\[ {}y^{\prime } = x \ln \left (x \right ) \]

14076

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]

14077

\[ {}y^{\prime } = \frac {-2 x -10}{\left (2+x \right ) \left (x -4\right )} \]

14078

\[ {}y^{\prime } = \frac {-x^{2}+x}{\left (1+x \right ) \left (x^{2}+1\right )} \]

14079

\[ {}y^{\prime } = \frac {\sqrt {x^{2}-16}}{x} \]

14080

\[ {}y^{\prime } = \left (-x^{2}+4\right )^{\frac {3}{2}} \]

14081

\[ {}y^{\prime } = \frac {1}{x^{2}-16} \]

14082

\[ {}y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

14083

\[ {}y^{\prime } = \sin \left (x \right )^{3} \tan \left (x \right ) \]

14084

\[ {}y^{\prime }+2 y = 0 \]

14085

\[ {}y^{\prime }+y = \sin \left (t \right ) \]

14086

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

14087

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

14088

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

14089

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]

14090

\[ {}t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y = 0 \]

14091

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0 \]

14092

\[ {}y^{\prime } = 4 x^{3}-x +2 \]

14093

\[ {}y^{\prime } = \sin \left (2 t \right )-\cos \left (2 t \right ) \]

14094

\[ {}y^{\prime } = \frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \]

14095

\[ {}y^{\prime } = \frac {\ln \left (x \right )}{x} \]

14096

\[ {}y^{\prime } = \frac {\left (x -4\right ) y^{3}}{x^{3} \left (y-2\right )} \]

14097

\[ {}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}} \]

14098

\[ {}x y^{\prime }+y = \cos \left (x \right ) \]

14099

\[ {}16 y^{\prime \prime }+24 y^{\prime }+153 y = 0 \]

14100

\[ {}[x^{\prime }\left (t \right ) = 4 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )] \]