# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime }+y \cot \left (x \right ) = 5 \,{\mathrm e}^{\cos \left (x \right )} \] |
✓ |
✓ |
|
\[ {}\left (3 x +3 y-4\right ) y^{\prime } = -x -y \] |
✓ |
✓ |
|
\[ {}x -x y^{2} = \left (x +x^{2} y\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}x -y-1+\left (4 y+x -1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \left (x y+1\right )+x \left (y^{2} x^{2}+x y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = x y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = y^{4} {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}2 y^{\prime }+y = y^{3} \left (-1+x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y \tan \left (x \right ) = y^{2} \tan \left (x \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \tan \left (x \right ) = y^{3} \sec \left (x \right )^{4} \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y+1 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime }-\left (1+x \right ) \sqrt {y-1} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}-2 x y+5 y^{2} = \left (x^{2}+2 x y+y^{2}\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \cot \left (x \right ) = y^{2} \sec \left (x \right )^{2} \] |
✓ |
✓ |
|
\[ {}y+\left (x^{2}-4 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \tan \left (x \right ) = \cos \left (x \right )-2 x \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x y+y^{2}}{x^{2}+2 x y} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (y+1\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+2 y = 3 x -1 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y^{2}-x y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \] |
✓ |
✓ |
|
\[ {}2 x y y^{\prime } = x^{2}-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x -2 y+1}{2 x -4 y} \] |
✓ |
✓ |
|
\[ {}\left (-x^{3}+1\right ) y^{\prime }+x^{2} y = x^{2} \left (-x^{3}+1\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x +x y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\left (\frac {1}{x}-\frac {2 x}{-x^{2}+1}\right ) y = \frac {1}{-x^{2}+1} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = \left (x^{2}+1\right )^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}x \left (1+y^{2}\right )-y \left (x^{2}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {r \tan \left (\theta \right ) r^{\prime }}{a^{2}-r^{2}} = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = x y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = 8 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = 10 \,{\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+25 y = 5 x^{2}+x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \,{\mathrm e}^{-2 x} \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime }-2 y^{\prime }-y = 2 x -3 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = 8 \,{\mathrm e}^{4 x} \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = {\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 54 x +18 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 100 \sin \left (4 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \sinh \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-2 y = 2 \cosh \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }+10 y = 20-{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \cos \left (x \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x +{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = x^{2}-1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = {\mathrm e}^{-3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 6 \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 3 \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+10 y = 50 x \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 85 \sin \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 3 \sin \left (x \right )-4 y \] |
✓ |
✓ |
|
\[ {}\frac {x^{\prime \prime }}{2} = -48 x \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+5 x^{\prime }+6 x = \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = 4 x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 2 \sin \left (\frac {t}{2}\right )-\cos \left (\frac {t}{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 64 \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 50 t^{3}-36 t^{2}-63 t +18 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 2 x \,{\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 9 x^{2}+2 x -1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y = 2 \,{\mathrm e}^{5 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-5 y = \left (-1+x \right ) \sin \left (x \right )+\left (1+x \right ) \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-5 y = 3 \,{\mathrm e}^{x}-2 x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-5 y = {\mathrm e}^{x} x^{2}-x \,{\mathrm e}^{5 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2}-1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = {\mathrm e}^{2 x} x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = \sin \left (x \right )+\cos \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 1+{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+y^{\prime } = \sec \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = \frac {{\mathrm e}^{x}}{1+{\mathrm e}^{-x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+4 x = \sin \left (2 t \right )^{2} \] |
✓ |
✓ |
|
\[ {}t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N = t \ln \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {4 y}{x} = x^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime } = 5 x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{5}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-60 y^{\prime }-900 y = 5 \,{\mathrm e}^{10 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-7 y^{\prime } = -3 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = \ln \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime } = x^{3} {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{x} = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|