# |
ODE |
Mathematica |
Maple |
\[ {}\frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}+\frac {2 y}{x^{3}}\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{4} \] |
✗ |
✗ |
|
\[ {}9 \sqrt {x}\, y^{\frac {4}{3}}-12 x^{\frac {1}{5}} y^{\frac {3}{2}}+\left (8 x^{\frac {3}{2}} y^{\frac {1}{3}}-15 x^{\frac {6}{5}} \sqrt {y}\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime } = \frac {-{\mathrm e}^{-x}+x}{{\mathrm e}^{y}+x} \] |
✗ |
✗ |
|
\[ {}{\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}x \ln \left (x \right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5} = \cos \left (t \right ) \] |
✗ |
✗ |
|
\[ {}t \left (-1+t \right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } = {| y|}+1 \] |
✗ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{\sin \left (x \right )} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \frac {{\mathrm e}^{x}+y}{x^{2}+y^{2}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{\ln \left (x y\right )} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \left (x^{2}+y^{2}\right ) y^{\frac {1}{3}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \ln \left (1+x^{2}+y^{2}\right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \sqrt {x^{2}+y^{2}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \left (x^{2}+y^{2}\right )^{2} \] |
✗ |
✗ |
|
\[ {}2 x^{2}+8 x y+y^{2}+\left (2 x^{2}+\frac {x y^{3}}{3}\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}y^{2} \sin \left (x \right )+x y^{3} \cos \left (x \right )+\left (x \sin \left (x \right ) y+x y^{3} \cos \left (x \right )\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}3 x^{2} \cos \left (x \right ) y-x^{3} y^{2} \sin \left (x \right )+4 x +\left (8 y-x^{4} \sin \left (x \right ) y\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}6 x y^{2}+2 y+\left (12 x^{2} y+12 x y^{2}\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}2 x y+y^{2}+\left (2 x y+x^{2}-2 x y^{2}-2 x y^{3}\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (1+x \right ) y = 0 \] |
✗ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (-2+x \right ) y = {\mathrm e}^{2 x} \] |
✗ |
✗ |
|
\[ {}\left (-1+x \right )^{2} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+\left (-1+x \right )^{3} y = \left (-1+x \right )^{3} {\mathrm e}^{x} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2}+\cos \left (t^{2}\right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime } = 1+y+y^{2} \cos \left (t \right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{3}+{\mathrm e}^{-5 t} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = {\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \] |
✗ |
✗ |
|
\[ {}x^{2}+3 x y^{\prime } = y^{3}+2 y \] |
✗ |
✓ |
|
\[ {}2 x +y+\left (4 x +2 y+1\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}x y^{2}+2 y+\left (2 y^{3}-x^{2} y+2 x \right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}y-x^{2} \sqrt {x^{2}-y^{2}}-x y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}y \left (x +y^{2}\right )+x y^{\prime } \left (x -y^{2}\right ) = 0 \] |
✗ |
✓ |
|
\[ {}\left (x \tan \left (y\right )^{2}-x \right ) y^{\prime } = 2 x^{2}+\tan \left (y\right ) \] |
✗ |
✗ |
|
\[ {}1+x y \left (1+x y^{2}\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}y^{2}+\left (x^{3}-2 x y\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}y^{3}+2 x^{2} y+\left (-3 x^{3}-2 x y^{2}\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right ) \] |
✗ |
✗ |
|
\[ {}y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2} \] |
✗ |
✓ |
|
\[ {}\left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime } \] |
✗ |
✓ |
|
\[ {}1+\left (2 y-x^{2}\right ) {y^{\prime }}^{2}-2 y {y^{\prime }}^{2} x^{2} = 0 \] |
✗ |
✗ |
|
\[ {}x y {y^{\prime }}^{2}+\left (x y-1\right ) y^{\prime } = y \] |
✗ |
✗ |
|
\[ {}3 {y^{\prime }}^{4} x = {y^{\prime }}^{3} y+1 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = \sin \left (y\right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime }+p \left (x \right ) y+q \left (x \right ) y^{2} = r \left (x \right ) \] |
✗ |
✗ |
|
\[ {}y \,{\mathrm e}^{x y}+\left (2 y-x \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}y^{2} \left (x^{2}+1\right )+y+\left (2 x y+1\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}y-x = {y^{\prime }}^{2} \left (1-\frac {2 y^{\prime }}{3}\right ) \] |
✗ |
✓ |
|
\[ {}x y y^{\prime } = \left (1+x \right ) \left (y+1\right ) \] |
✗ |
✓ |
|
\[ {}2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime } \] |
✗ |
✗ |
|
\[ {}x^{2}+y^{3}+y = \left (x^{3} y^{2}-x \right ) y^{\prime } \] |
✗ |
✗ |
|
\[ {}\cos \left (y\right )-x \sin \left (y\right ) y^{\prime } = \sec \left (x \right )^{2} \] |
✗ |
✓ |
|
\[ {}2 y^{4} x -y+\left (4 y^{3} x^{3}-x \right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}x^{2}+y^{3}+y+\left (x^{3}+y^{2}-x \right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}{y^{\prime }}^{3}+y^{2} = x y y^{\prime } \] |
✗ |
✓ |
|
\[ {}y = x y^{\prime }-x^{2} {y^{\prime }}^{3} \] |
✗ |
✓ |
|
\[ {}y \left (y-2 x y^{\prime }\right )^{3} = {y^{\prime }}^{2} \] |
✗ |
✓ |
|
\[ {}5 y+{y^{\prime }}^{2} = x \left (x +y^{\prime }\right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime }+f \left (x \right )^{2} = f^{\prime }\left (x \right )+y^{2} \] |
✗ |
✓ |
|
\[ {}y^{\prime } = f \left (x \right )+a y+b y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+a y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \operatorname {f0} \left (x \right )+\operatorname {f1} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\operatorname {f3} \left (x \right ) y^{3} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{n} \] |
✗ |
✗ |
|
\[ {}y^{\prime }+\left (f \left (x \right )-y\right ) g \left (x \right ) \sqrt {\left (y-a \right ) \left (y-b \right )} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }+f \left (x \right )+g \left (x \right ) \sin \left (a y\right )+h \left (x \right ) \cos \left (a y\right ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }+f \left (x \right )+g \left (x \right ) \tan \left (y\right ) = 0 \] |
✗ |
✗ |
|
\[ {}x y^{\prime } = \sin \left (x -y\right ) \] |
✗ |
✗ |
|
\[ {}x^{n} y^{\prime }+x^{2 n -2}+y^{2}+\left (1-n \right ) x^{n -1} = 0 \] |
✗ |
✓ |
|
\[ {}x^{k} y^{\prime } = a \,x^{m}+b y^{n} \] |
✗ |
✗ |
|
\[ {}y y^{\prime }+x^{3}+y = 0 \] |
✗ |
✗ |
|
\[ {}y y^{\prime }+f \left (x \right ) = g \left (x \right ) y \] |
✗ |
✗ |
|
\[ {}\left (\tan \left (x \right ) \sec \left (x \right )-2 y\right ) y^{\prime }+\sec \left (x \right ) \left (1+2 y \sin \left (x \right )\right ) = 0 \] |
✗ |
✗ |
|
\[ {}x \left (a +y\right ) y^{\prime }+b x +c y = 0 \] |
✗ |
✗ |
|
\[ {}\left (a +x \left (x +y\right )\right ) y^{\prime } = b \left (x +y\right ) y \] |
✗ |
✗ |
|
\[ {}\left (\operatorname {g0} \left (x \right )+y \operatorname {g1} \left (x \right )\right ) y^{\prime } = \operatorname {f0} \left (x \right )+\operatorname {f1} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\operatorname {f3} \left (x \right ) y^{3} \] |
✗ |
✗ |
|
\[ {}{y^{\prime }}^{2} = f \left (x \right )^{2} \left (y-u \left (x \right )\right )^{2} \left (y-a \right ) \left (y-b \right ) \] |
✗ |
✗ |
|
\[ {}x^{2} {y^{\prime }}^{2}+x \left (x^{2}+x y-2 y\right ) y^{\prime }+\left (1-x \right ) \left (x^{2}-y\right ) y = 0 \] |
✗ |
✗ |
|
\[ {}\left (a^{2}-2 a x y+y^{2}\right ) {y^{\prime }}^{2}+2 a y y^{\prime }+y^{2} = 0 \] |
✗ |
✗ |
|
\[ {}{y^{\prime }}^{3}-x y^{\prime }+a y = 0 \] |
✗ |
✓ |
|
\[ {}{y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \] |
✗ |
✓ |
|
\[ {}{y^{\prime }}^{3}-2 x y^{\prime }-y = 0 \] |
✗ |
✓ |
|
\[ {}{y^{\prime }}^{3}+{\mathrm e}^{3 x -2 y} \left (y^{\prime }-1\right ) = 0 \] |
✗ |
✓ |
|
\[ {}{y^{\prime }}^{3}+{\mathrm e}^{-2 y} \left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x -2 y} = 0 \] |
✗ |
✓ |
|
\[ {}{y^{\prime }}^{3}+\operatorname {a0} {y^{\prime }}^{2}+\operatorname {a1} y^{\prime }+\operatorname {a2} +\operatorname {a3} y = 0 \] |
✗ |
✓ |
|
\[ {}2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0 \] |
✗ |
✓ |
|
\[ {}2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \] |
✗ |
✓ |
|
\[ {}8 {y^{\prime }}^{3}+12 {y^{\prime }}^{2} = 27 x +27 y \] |
✗ |
✓ |
|
\[ {}x {y^{\prime }}^{3}-3 y {y^{\prime }}^{2} x^{2}+x \left (x^{5}+3 y^{2}\right ) y^{\prime }-2 x^{5} y-y^{3} = 0 \] |
✗ |
✗ |
|
\[ {}x^{6} {y^{\prime }}^{3}-x y^{\prime }-y = 0 \] |
✗ |
✓ |
|
\[ {}y^{2} {y^{\prime }}^{3}-x y^{\prime }+y = 0 \] |
✗ |
✓ |
|
\[ {}y^{3} {y^{\prime }}^{3}-\left (1-3 x \right ) y^{2} {y^{\prime }}^{2}+3 x^{2} y y^{\prime }+x^{3}-y^{2} = 0 \] |
✗ |
✓ |
|
\[ {}{y^{\prime }}^{4}+x y^{\prime }-3 y = 0 \] |
✗ |
✓ |
|
\[ {}x^{2} \left ({y^{\prime }}^{6}+3 y^{4}+3 y^{2}+1\right ) = a^{2} \] |
✗ |
✗ |
|
\[ {}\frac {x^{n} y^{\prime }}{b y^{2}-c \,x^{2 a}}-\frac {a y x^{a -1}}{b y^{2}-c \,x^{2 a}}+x^{a -1} = 0 \] |
✗ |
✗ |
|