2.1.1 Problems 1 to 100

Table 2.1: Problems not solved by Mathematica

#

ODE

Mathematica

Maple

119

\[ {}\frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}+\frac {2 y}{x^{3}}\right ) y^{\prime } = 0 \]

133

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{4} \]

146

\[ {}9 \sqrt {x}\, y^{\frac {4}{3}}-12 x^{\frac {1}{5}} y^{\frac {3}{2}}+\left (8 x^{\frac {3}{2}} y^{\frac {1}{3}}-15 x^{\frac {6}{5}} \sqrt {y}\right ) y^{\prime } = 0 \]

485

\[ {}y^{\prime } = \frac {-{\mathrm e}^{-x}+x}{{\mathrm e}^{y}+x} \]

550

\[ {}{\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime } = 0 \]

553

\[ {}x \ln \left (x \right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

710

\[ {}u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5} = \cos \left (t \right ) \]

813

\[ {}t \left (-1+t \right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

885

\[ {}y^{\prime } = {| y|}+1 \]

958

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{\sin \left (x \right )} \]

959

\[ {}y^{\prime } = \frac {{\mathrm e}^{x}+y}{x^{2}+y^{2}} \]

961

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{\ln \left (x y\right )} \]

962

\[ {}y^{\prime } = \left (x^{2}+y^{2}\right ) y^{\frac {1}{3}} \]

964

\[ {}y^{\prime } = \ln \left (1+x^{2}+y^{2}\right ) \]

966

\[ {}y^{\prime } = \sqrt {x^{2}+y^{2}} \]

968

\[ {}y^{\prime } = \left (x^{2}+y^{2}\right )^{2} \]

1039

\[ {}2 x^{2}+8 x y+y^{2}+\left (2 x^{2}+\frac {x y^{3}}{3}\right ) y^{\prime } = 0 \]

1041

\[ {}y^{2} \sin \left (x \right )+x y^{3} \cos \left (x \right )+\left (x \sin \left (x \right ) y+x y^{3} \cos \left (x \right )\right ) y^{\prime } = 0 \]

1046

\[ {}3 x^{2} \cos \left (x \right ) y-x^{3} y^{2} \sin \left (x \right )+4 x +\left (8 y-x^{4} \sin \left (x \right ) y\right ) y^{\prime } = 0 \]

1069

\[ {}6 x y^{2}+2 y+\left (12 x^{2} y+12 x y^{2}\right ) y^{\prime } = 0 \]

1075

\[ {}2 x y+y^{2}+\left (2 x y+x^{2}-2 x y^{2}-2 x y^{3}\right ) y^{\prime } = 0 \]

1105

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (1+x \right ) y = 0 \]

1162

\[ {}x^{2} y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (-2+x \right ) y = {\mathrm e}^{2 x} \]

1186

\[ {}\left (-1+x \right )^{2} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+\left (-1+x \right )^{3} y = \left (-1+x \right )^{3} {\mathrm e}^{x} \]

1697

\[ {}y^{\prime } = y^{2}+\cos \left (t^{2}\right ) \]

1698

\[ {}y^{\prime } = 1+y+y^{2} \cos \left (t \right ) \]

1700

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

1701

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

1702

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

1703

\[ {}y^{\prime } = y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \]

1704

\[ {}y^{\prime } = y^{3}+{\mathrm e}^{-5 t} \]

1706

\[ {}y^{\prime } = \left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \]

1707

\[ {}y^{\prime } = {\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \]

1897

\[ {}x^{2}+3 x y^{\prime } = y^{3}+2 y \]

1941

\[ {}2 x +y+\left (4 x +2 y+1\right ) y^{\prime } = 0 \]

1953

\[ {}x y^{2}+2 y+\left (2 y^{3}-x^{2} y+2 x \right ) y^{\prime } = 0 \]

1985

\[ {}y-x^{2} \sqrt {x^{2}-y^{2}}-x y^{\prime } = 0 \]

1986

\[ {}y \left (x +y^{2}\right )+x y^{\prime } \left (x -y^{2}\right ) = 0 \]

2026

\[ {}\left (x \tan \left (y\right )^{2}-x \right ) y^{\prime } = 2 x^{2}+\tan \left (y\right ) \]

2031

\[ {}1+x y \left (1+x y^{2}\right ) y^{\prime } = 0 \]

2083

\[ {}y^{2}+\left (x^{3}-2 x y\right ) y^{\prime } = 0 \]

2085

\[ {}y^{3}+2 x^{2} y+\left (-3 x^{3}-2 x y^{2}\right ) y^{\prime } = 0 \]

2304

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right ) \]

2307

\[ {}y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2} \]

2308

\[ {}\left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime } \]

2316

\[ {}1+\left (2 y-x^{2}\right ) {y^{\prime }}^{2}-2 y {y^{\prime }}^{2} x^{2} = 0 \]

2319

\[ {}x y {y^{\prime }}^{2}+\left (x y-1\right ) y^{\prime } = y \]

2350

\[ {}3 {y^{\prime }}^{4} x = {y^{\prime }}^{3} y+1 \]

2376

\[ {}y^{\prime \prime } = \sin \left (y\right ) \]

2707

\[ {}y^{\prime }+p \left (x \right ) y+q \left (x \right ) y^{2} = r \left (x \right ) \]

2713

\[ {}y \,{\mathrm e}^{x y}+\left (2 y-x \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

2990

\[ {}y^{2} \left (x^{2}+1\right )+y+\left (2 x y+1\right ) y^{\prime } = 0 \]

3000

\[ {}y-x = {y^{\prime }}^{2} \left (1-\frac {2 y^{\prime }}{3}\right ) \]

3022

\[ {}x y y^{\prime } = \left (1+x \right ) \left (y+1\right ) \]

3092

\[ {}2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime } \]

3118

\[ {}x^{2}+y^{3}+y = \left (x^{3} y^{2}-x \right ) y^{\prime } \]

3137

\[ {}\cos \left (y\right )-x \sin \left (y\right ) y^{\prime } = \sec \left (x \right )^{2} \]

3192

\[ {}2 y^{4} x -y+\left (4 y^{3} x^{3}-x \right ) y^{\prime } = 0 \]

3193

\[ {}x^{2}+y^{3}+y+\left (x^{3}+y^{2}-x \right ) y^{\prime } = 0 \]

3229

\[ {}{y^{\prime }}^{3}+y^{2} = x y y^{\prime } \]

3231

\[ {}y = x y^{\prime }-x^{2} {y^{\prime }}^{3} \]

3232

\[ {}y \left (y-2 x y^{\prime }\right )^{3} = {y^{\prime }}^{2} \]

3236

\[ {}5 y+{y^{\prime }}^{2} = x \left (x +y^{\prime }\right ) \]

3304

\[ {}y^{\prime }+f \left (x \right )^{2} = f^{\prime }\left (x \right )+y^{2} \]

3324

\[ {}y^{\prime } = f \left (x \right )+a y+b y^{2} \]

3326

\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+a y^{2} \]

3339

\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{2} \]

3352

\[ {}y^{\prime } = \operatorname {f0} \left (x \right )+\operatorname {f1} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\operatorname {f3} \left (x \right ) y^{3} \]

3355

\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{n} \]

3363

\[ {}y^{\prime }+\left (f \left (x \right )-y\right ) g \left (x \right ) \sqrt {\left (y-a \right ) \left (y-b \right )} = 0 \]

3368

\[ {}y^{\prime }+f \left (x \right )+g \left (x \right ) \sin \left (a y\right )+h \left (x \right ) \cos \left (a y\right ) = 0 \]

3384

\[ {}y^{\prime }+f \left (x \right )+g \left (x \right ) \tan \left (y\right ) = 0 \]

3463

\[ {}x y^{\prime } = \sin \left (x -y\right ) \]

3639

\[ {}x^{n} y^{\prime }+x^{2 n -2}+y^{2}+\left (1-n \right ) x^{n -1} = 0 \]

3642

\[ {}x^{k} y^{\prime } = a \,x^{m}+b y^{n} \]

3673

\[ {}y y^{\prime }+x^{3}+y = 0 \]

3676

\[ {}y y^{\prime }+f \left (x \right ) = g \left (x \right ) y \]

3728

\[ {}\left (\tan \left (x \right ) \sec \left (x \right )-2 y\right ) y^{\prime }+\sec \left (x \right ) \left (1+2 y \sin \left (x \right )\right ) = 0 \]

3776

\[ {}x \left (a +y\right ) y^{\prime }+b x +c y = 0 \]

3783

\[ {}\left (a +x \left (x +y\right )\right ) y^{\prime } = b \left (x +y\right ) y \]

3843

\[ {}\left (\operatorname {g0} \left (x \right )+y \operatorname {g1} \left (x \right )\right ) y^{\prime } = \operatorname {f0} \left (x \right )+\operatorname {f1} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\operatorname {f3} \left (x \right ) y^{3} \]

4011

\[ {}{y^{\prime }}^{2} = f \left (x \right )^{2} \left (y-u \left (x \right )\right )^{2} \left (y-a \right ) \left (y-b \right ) \]

4146

\[ {}x^{2} {y^{\prime }}^{2}+x \left (x^{2}+x y-2 y\right ) y^{\prime }+\left (1-x \right ) \left (x^{2}-y\right ) y = 0 \]

4216

\[ {}\left (a^{2}-2 a x y+y^{2}\right ) {y^{\prime }}^{2}+2 a y y^{\prime }+y^{2} = 0 \]

4251

\[ {}{y^{\prime }}^{3}-x y^{\prime }+a y = 0 \]

4252

\[ {}{y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

4253

\[ {}{y^{\prime }}^{3}-2 x y^{\prime }-y = 0 \]

4260

\[ {}{y^{\prime }}^{3}+{\mathrm e}^{3 x -2 y} \left (y^{\prime }-1\right ) = 0 \]

4261

\[ {}{y^{\prime }}^{3}+{\mathrm e}^{-2 y} \left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x -2 y} = 0 \]

4266

\[ {}{y^{\prime }}^{3}+\operatorname {a0} {y^{\prime }}^{2}+\operatorname {a1} y^{\prime }+\operatorname {a2} +\operatorname {a3} y = 0 \]

4274

\[ {}2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0 \]

4275

\[ {}2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \]

4278

\[ {}8 {y^{\prime }}^{3}+12 {y^{\prime }}^{2} = 27 x +27 y \]

4287

\[ {}x {y^{\prime }}^{3}-3 y {y^{\prime }}^{2} x^{2}+x \left (x^{5}+3 y^{2}\right ) y^{\prime }-2 x^{5} y-y^{3} = 0 \]

4290

\[ {}x^{6} {y^{\prime }}^{3}-x y^{\prime }-y = 0 \]

4294

\[ {}y^{2} {y^{\prime }}^{3}-x y^{\prime }+y = 0 \]

4299

\[ {}y^{3} {y^{\prime }}^{3}-\left (1-3 x \right ) y^{2} {y^{\prime }}^{2}+3 x^{2} y y^{\prime }+x^{3}-y^{2} = 0 \]

4305

\[ {}{y^{\prime }}^{4}+x y^{\prime }-3 y = 0 \]

4315

\[ {}x^{2} \left ({y^{\prime }}^{6}+3 y^{4}+3 y^{2}+1\right ) = a^{2} \]

4386

\[ {}\frac {x^{n} y^{\prime }}{b y^{2}-c \,x^{2 a}}-\frac {a y x^{a -1}}{b y^{2}-c \,x^{2 a}}+x^{a -1} = 0 \]