3.2.36 Problems 3501 to 3600

Table 3.209: Second order linear ODE




#

ODE

Mathematica

Maple





12283

\[ {}y^{\prime \prime }+9 y = 0 \]





12284

\[ {}4 y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]





12285

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]





12286

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]





12287

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]





12288

\[ {}4 y^{\prime \prime }-4 y^{\prime }+37 y = 0 \]





12289

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]





12290

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]





12291

\[ {}4 y^{\prime \prime }-12 y^{\prime }+13 y = 0 \]





12292

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 0 \]





12293

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]





12295

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]





12296

\[ {}y^{\prime \prime }-20 y^{\prime }+51 y = 0 \]





12297

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = 0 \]





12298

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 0 \]





12299

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]





12300

\[ {}4 y^{\prime \prime }+40 y^{\prime }+101 y = 0 \]





12301

\[ {}y^{\prime \prime }+6 y^{\prime }+34 y = 0 \]





12309

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 9 t \]





12310

\[ {}4 y^{\prime \prime }+16 y^{\prime }+17 y = 17 t -1 \]





12311

\[ {}4 y^{\prime \prime }+5 y^{\prime }+4 y = 3 \,{\mathrm e}^{-t} \]





12312

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{2} {\mathrm e}^{2 t} \]





12313

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-2 t} \]





12314

\[ {}2 y^{\prime \prime }-3 y^{\prime }+17 y = 17 t -1 \]





12315

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]





12316

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2+t \]





12318

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = \sin \left (2 t \right ) \]





12319

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = t^{2} \]





12320

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (t \right ) \]





12322

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 7 \,{\mathrm e}^{-2 t} \]





12325

\[ {}y^{\prime \prime }+9 y = 24 \sin \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )+\operatorname {Heaviside}\left (t -\pi \right )\right ) \]





12326

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (-1+t \right ) \]





12327

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]





12328

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 36 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (-1+t \right )\right ) \]





12329

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 39 \operatorname {Heaviside}\left (t \right )-507 \left (t -2\right ) \operatorname {Heaviside}\left (t -2\right ) \]





12330

\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t \right )-3 \operatorname {Heaviside}\left (t -4\right )+\left (2 t -5\right ) \operatorname {Heaviside}\left (t -4\right ) \]





12331

\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 25 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]





12332

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (-1+t \right )+\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -3\right ) \]





12333

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <1 \\ 6 & 1\le t \end {array}\right . \]





12334

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 1 & 1\le t <2 \\ -1 & 2\le t \end {array}\right . \]





12335

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t \end {array}\right . \]





12336

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <\pi \\ -t & \pi \le t \end {array}\right . \]





12337

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t & 0\le t <\frac {\pi }{2} \\ 8 \pi & \frac {\pi }{2}\le t \end {array}\right . \]





12338

\[ {}y^{\prime \prime }+4 \pi ^{2} y = 3 \delta \left (t -\frac {1}{3}\right )-\delta \left (-1+t \right ) \]





12339

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 3 \delta \left (-1+t \right ) \]





12340

\[ {}y^{\prime \prime }+4 y^{\prime }+29 y = 5 \delta \left (t -\pi \right )-5 \delta \left (t -2 \pi \right ) \]





12341

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 1-\delta \left (-1+t \right ) \]





12342

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \delta \left (-1+t \right ) \]





12343

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \delta \left (-1+t \right ) \]





12351

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = t^{7} \]





12352

\[ {}t^{2} y^{\prime \prime }-6 t y^{\prime }+\sin \left (2 t \right ) y = \ln \left (t \right ) \]





12353

\[ {}y^{\prime \prime }+3 y^{\prime }+\frac {y}{t} = t \]





12354

\[ {}y^{\prime \prime }+t y^{\prime }-y \ln \left (t \right ) = \cos \left (2 t \right ) \]





12355

\[ {}t^{3} y^{\prime \prime }-2 t y^{\prime }+y = t^{4} \]





12356

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 1 \]





12357

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t} \]





12358

\[ {}y^{\prime \prime }-3 y^{\prime }-7 y = 4 \]





12360

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 3 t^{2} \]





12394

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]





12395

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]





12396

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{\frac {3}{2}} {\mathrm e}^{x} \]





12397

\[ {}y^{\prime \prime }+4 y = 2 \sec \left (2 x \right ) \]





12398

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x \]





12399

\[ {}y^{\prime \prime }+y = f \left (x \right ) \]





12400

\[ {}x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2} = 0 \]





12401

\[ {}x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-y = 0 \]





12410

\[ {}y^{\prime \prime }-x^{2} y = 0 \]





12411

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]





12412

\[ {}x y^{\prime \prime }+\left (1+x \right )^{2} y = 0 \]





12413

\[ {}y^{\prime \prime }+\alpha ^{2} y = 0 \]





12414

\[ {}y^{\prime \prime }-\alpha ^{2} y = 0 \]





12415

\[ {}y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0 \]





12416

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]





12417

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = \sin \left (x \right ) \]





12423

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]





12424

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0 \]





12425

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0 \]





12492

\[ {}y^{\prime \prime } = a^{2} y \]





12494

\[ {}x y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} x^{2} \]





12496

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \sin \left (2 x \right ) \]





12501

\[ {}y^{\prime \prime } = 9 y \]





12502

\[ {}y^{\prime \prime }+y = 0 \]





12503

\[ {}y^{\prime \prime }-y = 0 \]





12504

\[ {}y^{\prime \prime }+12 y = 7 y^{\prime } \]





12505

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]





12506

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]





12507

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]





12508

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]





12509

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]





12518

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = x \]





12519

\[ {}s^{\prime \prime }-a^{2} s = t +1 \]





12520

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]





12521

\[ {}y^{\prime \prime }-y = 5 x +2 \]





12522

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = {\mathrm e}^{x} \]





12523

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = {\mathrm e}^{2 x} \]





12524

\[ {}y^{\prime \prime }+9 y = 6 \,{\mathrm e}^{3 x} \]





12525

\[ {}y^{\prime \prime }-3 y^{\prime } = 2-6 x \]





12526

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = \cos \left (x \right ) {\mathrm e}^{-x} \]





12527

\[ {}y^{\prime \prime }+4 y = 2 \sin \left (2 x \right ) \]





12531

\[ {}y^{\prime \prime }+2 h y^{\prime }+n^{2} y = 0 \]