2.2.7 Problems 601 to 698

Table 2.31: Problems not solved by Maple

#

ODE

Mathematica

Maple

11104

y+2kexμy+(ae2λx+beλx+k2e2xμ+kμexμ+c)y=0

11109

y+(a+be2λx)y+λ(aλbe2λx)y=0

11111

y+(2eλxaλ)y+(a2e2λx+cexμ)y=0

11116

y+(2eλxaλ)y+(a2e2λx+be2xμ+cexμ+k)y=0

11117

y+(2eλxa+bλ)y+(a2e2λx+abeλx+ce2xμ+dexμ+k)y=0

11118

y+(eλxa+bexμ)y+aeλx(bexμ+λ)y=0

11121

y+(eλxa+bexμ+c)y+(abex(λ+μ)+eλxac+bμexμ)y=0

11198

x3y4+x2y3+xy2+y+(x4y3x3y2x3y+x)y=0

11224

(xyy)2=x2(2xyx2y)

11230

(y+xy)(yy+x)=a2y

11329

x2(x3+1)yx3y2y=0

11404

x2+tx=t+1

11415

cos(θ)v+v=3

11518

x+4x=cos(2t)Heaviside(2πt)

11589

y+y=0

11590

y+y=0

11599

3x2y+2(x3+y)y=0

11604

2y32+1x13+(3xy1)y=0

11904

(x42x3+x2)y+2(1+x)y+x2y=0

11905

(x5+x46x3)y+x2y+(2+x)y=0

11994

x=x(k2+x2)

11995

y+yx=x2

12050

(tcos(t)sin(t))xxtsin(t)xsin(t)=0

12134

y=xy3+x2

12214

y=sin(xy)

12218

y=tln(y2t)+t2

12220

y=ln(xy)

12226

y+yy=1

12238

y+xyy2=sin(x)

12239

y2+xyy2=ln(x)

12240

sin(y)+yy=1

12241

sinh(x)y2+y=xy

12243

y2+y=sin(x)

12248

(x3)y+ln(x)y=x2

12251

xy+2x2y+ysin(x)=sinh(x)

12252

sin(x)y+xy+7y=1

12264

ln(x2+1)y+4xyx2+1+(x2+1)y(x2+1)2=0

12269

xy+(6xy2+1)y+2y3+1=0

12281

y+(1+x)yx+yx3=e1xx3

12352

t2y6ty+sin(2t)y=ln(t)

12354

y+tyyln(t)=cos(2t)

12406

x3y+x2y+y=0

12407

x2y+y2y=0

12412

xy+(1+x)2y=0

12421

xy(1y2)=(x2y2a2)y

12570

x+x+xx3=0

12571

x+x+x+x3=0

12614

x2y4xy+6y=0

12631

y=x3+y3

12636

y=115x2y2

12749

(x24)y+ln(x)y=xex

12827

[y1(x)=sin(x)y1(x)+xy2(x)+ln(x),y2(x)=tan(x)y1(x)exy2(x)+1]

12828

[y1(x)=sin(x)y1(x)+xy2(x)+ln(x),y2(x)=tan(x)y1(x)exy2(x)+1]

12829

[y1(x)=exy1(x)1+xy2(x)+x2,y2(x)=y1(x)(2+x)2]

12830

[y1(x)=exy1(x)1+xy2(x)+x2,y2(x)=y1(x)(2+x)2]

12842

[y1(x)=2xy1(x)x2y2(x)+4x,y2(x)=exy1(x)+3exy2(x)cos(3x)]

12938

y=2y3+t2

13034

y=(y3)(sin(y)sin(t)+cos(t)+1)

13057

y=(y1)(y2)(yet2)

13250

y2y=8x2

13289

sin(x+y)yy=0

13348

y2y+3x2y=sin(x)

13529

y+x2y+4y=y3

13535

yy+6y+3y=y

13559

x3y4y+10y12y=0

13569

x2y4xy+6y=0

13570

xyy+4x3y=0

14043

[x(t)=x(t)y(t)6y(t),y(t)=x(t)y(t)5]

14050

xy2+2y=2x

14051

x+2sin(x)=sin(2t)

14101

4x(x2+y2)5y+4y(x2+y25x)y=0

14121

y+4y=t

14126

y+t2=1y2

14133

y=sin(y)cos(t)

14296

e2ty(eyt)y=0

14313

1y2cos(ty)+(tycos(ty)+sin(ty))y=0

14323

ey2ty+(teyt2)y=0

14327

1t2+1y22tyy=0

14328

2tt2+1+y+(ey+t)y=0

14440

y=x+y13

14441

y=sin(x2y)

14472

y+b(t)y+c(t)y=0

14473

y+b(t)y+c(t)y=0

14626

e2t(yyy2)2t(t+1)y=0

14633

4t2y+4ty+(16t21)y=16t32

14803

x(1+x)y+yx2+5y=0

14870

y8y+16y=e4tt3

14941

y=sin(y)cos(x)

15001

x3ysin(y)=1

15059

ytan(y)=excos(y)

15197

y=1y2

15217

y3y=1

15432

4xy+2y+y=1

15444

x2x2+x2x=0

15446

x+exx=0

15449

xx+xx2=0

15453

y+y=0

15524

[x(t)=cos(x(t))2cos(y(t))2+sin(x(t))2cos(y(t))2,y(t)=sin(2x(t))sin(2y(t))2]