# |
ODE |
Mathematica |
Maple |
\[ {}x^{2} \left (-x^{3}+1\right ) y^{\prime \prime }-x^{3} y^{\prime }-2 y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2} = 0 \] |
✗ |
✓ |
|
\[ {}x^{2} y y^{\prime \prime }+\left (-y+x y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime }-\left (-y+x y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right )-y^{2} x^{2} \] |
✓ |
✓ |
|
\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (4 x +2\right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \] |
✓ |
✓ |
|
\[ {}x \left (2 y+x \right ) y^{\prime \prime }+2 x {y^{\prime }}^{2}+4 \left (x +y\right ) y^{\prime }+2 y+x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} x^{\prime \prime }-6 x = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{\prime \prime }-5 x^{\prime }-3 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime } = -3 \sqrt {t} \] |
✓ |
✓ |
|
\[ {}x^{\prime }+t x^{\prime \prime } = 1 \] |
✓ |
✓ |
|
\[ {}\frac {x^{\prime }+t x^{\prime \prime }}{t} = -2 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime } = 3 t \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+4 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-4 x^{\prime }+6 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+9 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-12 x = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{\prime \prime }+3 x^{\prime }+3 x = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9} = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+\frac {x^{\prime }}{8}+x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = 3 t^{3}-1 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = 3 \cos \left (t \right )-2 \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = 12 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = t^{2} {\mathrm e}^{3 t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (7 t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = {\mathrm e}^{2 t} \cos \left (t \right )+t^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = t \,{\mathrm e}^{-t} \sin \left (\pi t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = \left (2+t \right ) \sin \left (\pi t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = 4 t +5 \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (2 t \right )+t \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = t^{3}+1-4 t \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = -6+2 \,{\mathrm e}^{2 t} \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+7 x = t \,{\mathrm e}^{3 t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-x^{\prime } = 6+{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x = t^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-3 x^{\prime }-4 x = 2 t^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x = 9 \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-4 x = \cos \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+2 x = t \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-b x^{\prime }+x = \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-3 x^{\prime }-40 x = 2 \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-2 x^{\prime } = 4 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+2 x = \cos \left (\sqrt {2}\, t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+\frac {x^{\prime }}{100}+4 x = \cos \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+w^{2} x = \cos \left (\beta t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+3025 x = \cos \left (45 t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime } = -\frac {x}{t^{2}} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime } = \frac {4 x}{t^{2}} \] |
✓ |
✓ |
|
\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t} = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} x^{\prime \prime }-7 t x^{\prime }+16 x = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }-8 x = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} x^{\prime \prime }+t x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} x^{\prime \prime }-t x^{\prime }+2 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+t^{2} x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x = \tan \left (t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-x = t \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-x = \frac {1}{t} \] |
✓ |
✓ |
|
\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x = \frac {1}{t +1} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-2 x^{\prime }+x = \frac {{\mathrm e}^{t}}{2 t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+\frac {x^{\prime }}{t} = a \] |
✓ |
✓ |
|
\[ {}t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-x = \frac {{\mathrm e}^{t}}{1+{\mathrm e}^{t}} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+t x^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-t x^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-2 a x^{\prime }+a^{2} x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-\frac {\left (2+t \right ) x^{\prime }}{t}+\frac {\left (2+t \right ) x}{t^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} x^{\prime \prime }+t x^{\prime }+\left (t^{2}-\frac {1}{4}\right ) x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-x^{\prime }-6 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = {\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+\frac {2 x^{\prime }}{5}+2 x = 1-\operatorname {Heaviside}\left (t -5\right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+9 x = \sin \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-2 x = 1 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+\pi ^{2} x = \pi ^{2} \operatorname {Heaviside}\left (1-t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-4 x = 1-\operatorname {Heaviside}\left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+3 x^{\prime }+2 x = {\mathrm e}^{-4 t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-x = \delta \left (t -5\right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x = \delta \left (t -2\right ) \] |
✓ |
✓ |
|