3.3.37 Problems 3601 to 3700

Table 3.305: Second order ode

#

ODE

Mathematica

Maple

11329

\[ {}x^{2} \left (-x^{3}+1\right ) y^{\prime \prime }-x^{3} y^{\prime }-2 y = 0 \]

11331

\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2} = 0 \]

11332

\[ {}x^{2} y y^{\prime \prime }+\left (-y+x y^{\prime }\right )^{2} = 0 \]

11333

\[ {}x^{3} y^{\prime \prime }-\left (-y+x y^{\prime }\right )^{2} = 0 \]

11334

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right )-y^{2} x^{2} \]

11335

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 y = 0 \]

11336

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

11337

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

11338

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

11340

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (4 x +2\right ) y^{\prime }+2 y = 0 \]

11341

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

11342

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

11343

\[ {}x \left (2 y+x \right ) y^{\prime \prime }+2 x {y^{\prime }}^{2}+4 \left (x +y\right ) y^{\prime }+2 y+x^{2} = 0 \]

11344

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

11345

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2} = 0 \]

11347

\[ {}\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right ) = 0 \]

11352

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 0 \]

11356

\[ {}t^{2} x^{\prime \prime }-6 x = 0 \]

11357

\[ {}2 x^{\prime \prime }-5 x^{\prime }-3 x = 0 \]

11362

\[ {}x^{\prime \prime } = -3 \sqrt {t} \]

11367

\[ {}x^{\prime }+t x^{\prime \prime } = 1 \]

11396

\[ {}\frac {x^{\prime }+t x^{\prime \prime }}{t} = -2 \]

11420

\[ {}x^{\prime \prime }+x^{\prime } = 3 t \]

11436

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

11437

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]

11438

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]

11439

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

11440

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

11441

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]

11442

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]

11443

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

11444

\[ {}x^{\prime \prime }+x^{\prime }+4 x = 0 \]

11445

\[ {}x^{\prime \prime }-4 x^{\prime }+6 x = 0 \]

11446

\[ {}x^{\prime \prime }+9 x = 0 \]

11447

\[ {}x^{\prime \prime }-12 x = 0 \]

11448

\[ {}2 x^{\prime \prime }+3 x^{\prime }+3 x = 0 \]

11449

\[ {}\frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9} = 0 \]

11450

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]

11451

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{8}+x = 0 \]

11452

\[ {}x^{\prime \prime }+x^{\prime }+x = 3 t^{3}-1 \]

11453

\[ {}x^{\prime \prime }+x^{\prime }+x = 3 \cos \left (t \right )-2 \sin \left (t \right ) \]

11454

\[ {}x^{\prime \prime }+x^{\prime }+x = 12 \]

11455

\[ {}x^{\prime \prime }+x^{\prime }+x = t^{2} {\mathrm e}^{3 t} \]

11456

\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (7 t \right ) \]

11457

\[ {}x^{\prime \prime }+x^{\prime }+x = {\mathrm e}^{2 t} \cos \left (t \right )+t^{2} \]

11458

\[ {}x^{\prime \prime }+x^{\prime }+x = t \,{\mathrm e}^{-t} \sin \left (\pi t \right ) \]

11459

\[ {}x^{\prime \prime }+x^{\prime }+x = \left (2+t \right ) \sin \left (\pi t \right ) \]

11460

\[ {}x^{\prime \prime }+x^{\prime }+x = 4 t +5 \,{\mathrm e}^{-t} \]

11461

\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (2 t \right )+t \,{\mathrm e}^{t} \]

11462

\[ {}x^{\prime \prime }+x^{\prime }+x = t^{3}+1-4 t \cos \left (t \right ) \]

11463

\[ {}x^{\prime \prime }+x^{\prime }+x = -6+2 \,{\mathrm e}^{2 t} \sin \left (t \right ) \]

11464

\[ {}x^{\prime \prime }+7 x = t \,{\mathrm e}^{3 t} \]

11465

\[ {}x^{\prime \prime }-x^{\prime } = 6+{\mathrm e}^{2 t} \]

11466

\[ {}x^{\prime \prime }+x = t^{2} \]

11467

\[ {}x^{\prime \prime }-3 x^{\prime }-4 x = 2 t^{2} \]

11468

\[ {}x^{\prime \prime }+x = 9 \,{\mathrm e}^{-t} \]

11469

\[ {}x^{\prime \prime }-4 x = \cos \left (2 t \right ) \]

11470

\[ {}x^{\prime \prime }+x^{\prime }+2 x = t \sin \left (2 t \right ) \]

11471

\[ {}x^{\prime \prime }-b x^{\prime }+x = \sin \left (2 t \right ) \]

11472

\[ {}x^{\prime \prime }-3 x^{\prime }-40 x = 2 \,{\mathrm e}^{-t} \]

11473

\[ {}x^{\prime \prime }-2 x^{\prime } = 4 \]

11474

\[ {}x^{\prime \prime }+2 x = \cos \left (\sqrt {2}\, t \right ) \]

11475

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{100}+4 x = \cos \left (2 t \right ) \]

11476

\[ {}x^{\prime \prime }+w^{2} x = \cos \left (\beta t \right ) \]

11477

\[ {}x^{\prime \prime }+3025 x = \cos \left (45 t \right ) \]

11478

\[ {}x^{\prime \prime } = -\frac {x}{t^{2}} \]

11479

\[ {}x^{\prime \prime } = \frac {4 x}{t^{2}} \]

11480

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0 \]

11481

\[ {}t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t} = 0 \]

11482

\[ {}t^{2} x^{\prime \prime }-7 t x^{\prime }+16 x = 0 \]

11483

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }-8 x = 0 \]

11484

\[ {}t^{2} x^{\prime \prime }+t x^{\prime } = 0 \]

11485

\[ {}t^{2} x^{\prime \prime }-t x^{\prime }+2 x = 0 \]

11486

\[ {}x^{\prime \prime }+t^{2} x^{\prime } = 0 \]

11487

\[ {}x^{\prime \prime }+x = \tan \left (t \right ) \]

11488

\[ {}x^{\prime \prime }-x = t \,{\mathrm e}^{t} \]

11489

\[ {}x^{\prime \prime }-x = \frac {1}{t} \]

11490

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

11491

\[ {}x^{\prime \prime }+x = \frac {1}{t +1} \]

11492

\[ {}x^{\prime \prime }-2 x^{\prime }+x = \frac {{\mathrm e}^{t}}{2 t} \]

11493

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{t} = a \]

11494

\[ {}t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7} \]

11495

\[ {}x^{\prime \prime }-x = \frac {{\mathrm e}^{t}}{1+{\mathrm e}^{t}} \]

11496

\[ {}x^{\prime \prime }+t x^{\prime }+x = 0 \]

11497

\[ {}x^{\prime \prime }-t x^{\prime }+x = 0 \]

11498

\[ {}x^{\prime \prime }-2 a x^{\prime }+a^{2} x = 0 \]

11499

\[ {}x^{\prime \prime }-\frac {\left (2+t \right ) x^{\prime }}{t}+\frac {\left (2+t \right ) x}{t^{2}} = 0 \]

11500

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }+\left (t^{2}-\frac {1}{4}\right ) x = 0 \]

11510

\[ {}x^{\prime \prime }-x^{\prime }-6 x = 0 \]

11511

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 0 \]

11512

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = {\mathrm e}^{-t} \]

11513

\[ {}x^{\prime \prime }-x^{\prime } = 0 \]

11514

\[ {}x^{\prime \prime }+\frac {2 x^{\prime }}{5}+2 x = 1-\operatorname {Heaviside}\left (t -5\right ) \]

11515

\[ {}x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]

11516

\[ {}x^{\prime \prime }-2 x = 1 \]

11521

\[ {}x^{\prime \prime }+\pi ^{2} x = \pi ^{2} \operatorname {Heaviside}\left (1-t \right ) \]

11522

\[ {}x^{\prime \prime }-4 x = 1-\operatorname {Heaviside}\left (-1+t \right ) \]

11523

\[ {}x^{\prime \prime }+3 x^{\prime }+2 x = {\mathrm e}^{-4 t} \]

11525

\[ {}x^{\prime \prime }-x = \delta \left (t -5\right ) \]

11526

\[ {}x^{\prime \prime }+x = \delta \left (t -2\right ) \]