3.4.3 Problems 201 to 300

Table 3.341: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

1725

\[ {}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0 \]

1726

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

1727

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }-2 y = 0 \]

1728

\[ {}y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

1729

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

1730

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

1731

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

1732

\[ {}4 y^{\prime \prime }-y^{\prime }+y = 0 \]

1733

\[ {}y^{\prime \prime }+y^{\prime }+2 y = 0 \]

1734

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

1735

\[ {}2 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

1736

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]

1737

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

1738

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y = 0 \]

1739

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

1740

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

1741

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

1742

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

1743

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

1744

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

1745

\[ {}y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

1746

\[ {}y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

1747

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

1748

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

1749

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

1750

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y = 0 \]

1751

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

1752

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

1753

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

1783

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+9 y = 0 \]

1784

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

1785

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

1786

\[ {}\left (-1+t \right )^{2} y^{\prime \prime }-2 \left (-1+t \right ) y^{\prime }+2 y = 0 \]

1787

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

1788

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

1789

\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \]

1790

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

1791

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+2 y = 0 \]

1792

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]

2088

\[ {}y^{\prime \prime }-4 y = 0 \]

2089

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 0 \]

2090

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

2091

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = 0 \]

2092

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

2093

\[ {}y^{\prime \prime }-2 y^{\prime }-y = 0 \]

2094

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

2095

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

2096

\[ {}2 y^{\prime \prime }+2 y^{\prime }-y = 0 \]

2117

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

2118

\[ {}y^{\prime \prime } = 0 \]

2129

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

2250

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+y = 0 \]

2251

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+16 y = 0 \]

2252

\[ {}4 x^{2} y^{\prime \prime }-16 x y^{\prime }+25 y = 0 \]

2253

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+10 y = 0 \]

2274

\[ {}y^{\prime \prime } = k^{2} y \]

2275

\[ {}x^{\prime \prime }+k^{2} x = 0 \]

2277

\[ {}x^{\prime \prime } = \frac {k^{2}}{x^{2}} \]

2279

\[ {}\left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

2280

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right ) = 0 \]

2281

\[ {}y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

2287

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

2288

\[ {}y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2} \]

2289

\[ {}y^{\prime \prime } = y y^{\prime } \]

2291

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

2292

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 0 \]

2293

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

2295

\[ {}y^{\prime \prime } = y \]

2296

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

2297

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

2299

\[ {}y^{\prime \prime }+y^{\prime } = {y^{\prime }}^{3} \]

2300

\[ {}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

2302

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]

2303

\[ {}y^{\prime \prime } = y^{3} \]

2304

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right ) \]

2305

\[ {}y y^{\prime \prime }-y^{2} y^{\prime } = {y^{\prime }}^{2} \]

2307

\[ {}y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2} \]

2308

\[ {}\left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime } \]

2309

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \sin \left (x \right ) \]

2310

\[ {}2 y y^{\prime \prime } = y^{3}+2 {y^{\prime }}^{2} \]

2311

\[ {}x^{\prime \prime }-k^{2} x = 0 \]

2312

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2} \]

2313

\[ {}\left (-{\mathrm e}^{x}+1\right ) y^{\prime \prime } = {\mathrm e}^{x} y^{\prime } \]

2512

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+y^{\prime } = 0 \]

2514

\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = 0 \]

2524

\[ {}\left (-2+x \right ) y^{\prime \prime }+3 y^{\prime }+\frac {4 y}{x^{2}} = 0 \]

2587

\[ {}y^{\prime \prime }-25 y = 0 \]

2588

\[ {}y^{\prime \prime }+4 y = 0 \]

2589

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

2592

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

2593

\[ {}y^{\prime \prime }-9 y = 0 \]

2594

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

2595

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

2596

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

2599

\[ {}y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y = 0 \]

2600

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

2601

\[ {}y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y = 0 \]

2602

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

2603

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

2604

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]