3.4.21 Problems 2001 to 2100

Table 3.377: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

9928

\[ {}y^{\prime \prime }+a \,{\mathrm e}^{x} \sqrt {y} = 0 \]

9929

\[ {}y^{\prime \prime }+{\mathrm e}^{x} \sin \left (y\right ) = 0 \]

9930

\[ {}y^{\prime \prime }+a \sin \left (y\right ) = 0 \]

9933

\[ {}y^{\prime \prime } = \frac {f \left (\frac {y}{\sqrt {x}}\right )}{x^{\frac {3}{2}}} \]

9934

\[ {}y^{\prime \prime }-3 y^{\prime }-y^{2}-2 y = 0 \]

9935

\[ {}y^{\prime \prime }-7 y^{\prime }-y^{\frac {3}{2}}+12 y = 0 \]

9936

\[ {}y^{\prime \prime }+5 a y^{\prime }-6 y^{2}+6 a^{2} y = 0 \]

9937

\[ {}y^{\prime \prime }+3 a y^{\prime }-2 y^{3}+2 a^{2} y = 0 \]

9938

\[ {}y^{\prime \prime }-\frac {\left (3 n +4\right ) y^{\prime }}{n}-\frac {2 \left (n +1\right ) \left (n +2\right ) y \left (y^{\frac {n}{n +1}}-1\right )}{n^{2}} = 0 \]

9939

\[ {}y^{\prime \prime }+a y^{\prime }+b y^{n}+\frac {\left (a^{2}-1\right ) y}{4} = 0 \]

9940

\[ {}y^{\prime \prime }+a y^{\prime }+b \,x^{v} y^{n} = 0 \]

9942

\[ {}y^{\prime \prime }+a y^{\prime }+f \left (x \right ) \sin \left (y\right ) = 0 \]

9943

\[ {}y^{\prime \prime }+y y^{\prime }-y^{3} = 0 \]

9944

\[ {}y^{\prime \prime }+y y^{\prime }-y^{3}+a y = 0 \]

9945

\[ {}y^{\prime \prime }+\left (y+3 a \right ) y^{\prime }-y^{3}+a y^{2}+2 a^{2} y = 0 \]

9946

\[ {}y^{\prime \prime }+\left (y+3 f \left (x \right )\right ) y^{\prime }-y^{3}+y^{2} f \left (x \right )+y \left (f^{\prime }\left (x \right )+2 f \left (x \right )^{2}\right ) = 0 \]

9948

\[ {}y^{\prime \prime }+\left (y-\frac {3 f^{\prime }\left (x \right )}{2 f \left (x \right )}\right ) y^{\prime }-y^{3}-\frac {f^{\prime }\left (x \right ) y^{2}}{2 f \left (x \right )}+\frac {\left (f \left (x \right )+\frac {{f^{\prime }\left (x \right )}^{2}}{f \left (x \right )^{2}}-f^{\prime \prime }\left (x \right )\right ) y}{2 f \left (x \right )} = 0 \]

9949

\[ {}y^{\prime \prime }+2 y y^{\prime }+f \left (x \right ) y^{\prime }+f^{\prime }\left (x \right ) y = 0 \]

9952

\[ {}y^{\prime \prime }+\left (3 y+f \left (x \right )\right ) y^{\prime }+y^{3}+y^{2} f \left (x \right ) = 0 \]

9954

\[ {}y^{\prime \prime }-\left (3 y+f \left (x \right )\right ) y^{\prime }+y^{3}+y^{2} f \left (x \right ) = 0 \]

9955

\[ {}y^{\prime \prime }-2 a y y^{\prime } = 0 \]

9956

\[ {}y^{\prime \prime }+a y y^{\prime }+b y^{3} = 0 \]

9957

\[ {}y^{\prime \prime }+f \left (x , y\right ) y^{\prime }+g \left (x , y\right ) = 0 \]

9958

\[ {}y^{\prime \prime }+a {y^{\prime }}^{2}+b y = 0 \]

9959

\[ {}y^{\prime \prime }+a y^{\prime } {| y^{\prime }|}+b y^{\prime }+c y = 0 \]

9960

\[ {}y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{\prime }+c y = 0 \]

9961

\[ {}y^{\prime \prime }+a {y^{\prime }}^{2}+b \sin \left (y\right ) = 0 \]

9962

\[ {}y^{\prime \prime }+a y^{\prime } {| y^{\prime }|}+b \sin \left (y\right ) = 0 \]

9963

\[ {}y^{\prime \prime }+a y {y^{\prime }}^{2}+b y = 0 \]

9964

\[ {}y^{\prime \prime }+f \left (y\right ) {y^{\prime }}^{2}+g \left (x \right ) y^{\prime } = 0 \]

9965

\[ {}y^{\prime \prime }-\frac {D\left (f \right )\left (y\right ) {y^{\prime }}^{3}}{f \left (y\right )}+g \left (x \right ) y^{\prime }+h \left (x \right ) f \left (y\right ) = 0 \]

9966

\[ {}y^{\prime \prime }+\phi \left (y\right ) {y^{\prime }}^{2}+f \left (x \right ) y^{\prime }+g \left (x \right ) \Phi \left (y\right ) = 0 \]

9967

\[ {}y^{\prime \prime }+f \left (y\right ) {y^{\prime }}^{2}+g \left (y\right ) y^{\prime }+h \left (y\right ) = 0 \]

9968

\[ {}y^{\prime \prime }+\left (1+{y^{\prime }}^{2}\right ) \left (f \left (x , y\right ) y^{\prime }+g \left (x , y\right )\right ) = 0 \]

9969

\[ {}y^{\prime \prime }+a y \left (1+{y^{\prime }}^{2}\right )^{2} = 0 \]

9970

\[ {}y^{\prime \prime }-a \left (-y+x y^{\prime }\right )^{v} = 0 \]

9971

\[ {}y^{\prime \prime }-k \,x^{a} y^{b} {y^{\prime }}^{r} = 0 \]

9972

\[ {}y^{\prime \prime }+\left (y^{\prime }-\frac {y}{x}\right )^{a} f \left (x , y\right ) = 0 \]

9973

\[ {}y^{\prime \prime } = a \sqrt {1+{y^{\prime }}^{2}} \]

9975

\[ {}y^{\prime \prime } = a \sqrt {{y^{\prime }}^{2}+b y^{2}} \]

9976

\[ {}y^{\prime \prime } = a \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \]

9977

\[ {}y^{\prime \prime }-2 a x \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} = 0 \]

9978

\[ {}y^{\prime \prime }-a y \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} = 0 \]

9979

\[ {}y^{\prime \prime } = 2 a \left (c +b x +y\right ) \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \]

9980

\[ {}y^{\prime \prime }+y^{3} y^{\prime }-y y^{\prime } \sqrt {y^{4}+4 y^{\prime }} = 0 \]

9981

\[ {}y^{\prime \prime }-f \left (y^{\prime }, a x +b y\right ) = 0 \]

9982

\[ {}y^{\prime \prime }-y f \left (x , \frac {y^{\prime }}{y}\right ) = 0 \]

9983

\[ {}y^{\prime \prime }-x^{n -2} f \left (y x^{-n}, y^{\prime } x^{1-n}\right ) = 0 \]

9984

\[ {}8 y^{\prime \prime }+9 {y^{\prime }}^{4} = 0 \]

9985

\[ {}a y^{\prime \prime }+h \left (y^{\prime }\right )+c y = 0 \]

9986

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y^{n} = 0 \]

9987

\[ {}x y^{\prime \prime }+2 y^{\prime }+a \,x^{v} y^{n} = 0 \]

9988

\[ {}x y^{\prime \prime }+2 y^{\prime }+x \,{\mathrm e}^{y} = 0 \]

9989

\[ {}x y^{\prime \prime }+a y^{\prime }+b x \,{\mathrm e}^{y} = 0 \]

9990

\[ {}x y^{\prime \prime }+a y^{\prime }+b \,x^{5-2 a} {\mathrm e}^{y} = 0 \]

9991

\[ {}x y^{\prime \prime }+\left (y-1\right ) y^{\prime } = 0 \]

9992

\[ {}x y^{\prime \prime }-x^{2} {y^{\prime }}^{2}+2 y^{\prime }+y^{2} = 0 \]

9994

\[ {}2 x y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

9995

\[ {}x^{2} y^{\prime \prime } = a \left (y^{n}-y\right ) \]

9996

\[ {}x^{2} y^{\prime \prime }+a \left ({\mathrm e}^{y}-1\right ) = 0 \]

9997

\[ {}x^{2} y^{\prime \prime }-\left (2 a +b -1\right ) x y^{\prime }+\left (c^{2} b^{2} x^{2 b}+a \left (a +b \right )\right ) y = 0 \]

9998

\[ {}x^{2} y^{\prime \prime }+\left (1+a \right ) x y^{\prime }-x^{k} f \left (x^{k} y, x y^{\prime }+k y\right ) = 0 \]

10001

\[ {}x^{2} y^{\prime \prime }-\sqrt {a \,x^{2} {y^{\prime }}^{2}+b y^{2}} = 0 \]

10003

\[ {}4 x^{2} y^{\prime \prime }-x^{4} {y^{\prime }}^{2}+4 y = 0 \]

10004

\[ {}9 x^{2} y^{\prime \prime }+a y^{3}+2 y = 0 \]

10006

\[ {}x^{3} y^{\prime \prime }-a \left (-y+x y^{\prime }\right )^{2} = 0 \]

10009

\[ {}x^{4} y^{\prime \prime }+a^{2} y^{n} = 0 \]

10010

\[ {}x^{4} y^{\prime \prime }-x \left (x^{2}+2 y\right ) y^{\prime }+4 y^{2} = 0 \]

10011

\[ {}x^{4} y^{\prime \prime }-x^{2} \left (x +y^{\prime }\right ) y^{\prime }+4 y^{2} = 0 \]

10012

\[ {}x^{4} y^{\prime \prime }+\left (-y+x y^{\prime }\right )^{3} = 0 \]

10013

\[ {}y^{\prime \prime } \sqrt {x}-y^{\frac {3}{2}} = 0 \]

10014

\[ {}\left (x^{2} a +b x +c \right )^{\frac {3}{2}} y^{\prime \prime }-F \left (\frac {y}{\sqrt {x^{2} a +b x +c}}\right ) = 0 \]

10015

\[ {}x^{\frac {n}{n +1}} y^{\prime \prime }-y^{\frac {2 n +1}{n +1}} = 0 \]

10016

\[ {}f \left (x \right )^{2} y^{\prime \prime }+f \left (x \right ) f^{\prime }\left (x \right ) y^{\prime }-h \left (y, f \left (x \right ) y^{\prime }\right ) = 0 \]

10022

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \]

10025

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+{\mathrm e}^{x} y \left (c y^{2}+d \right )+{\mathrm e}^{2 x} \left (b +a y^{4}\right ) = 0 \]

10026

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-y^{2} \ln \left (y\right ) = 0 \]

10027

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-y^{\prime }+f \left (x \right ) y^{3}+y^{2} \left (\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )}-\frac {{f^{\prime }\left (x \right )}^{2}}{f \left (x \right )^{2}}\right ) = 0 \]

10028

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+f \left (x \right ) y^{\prime }-f^{\prime }\left (x \right ) y-y^{3} = 0 \]

10029

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+f^{\prime }\left (x \right ) y^{\prime }-f^{\prime \prime }\left (x \right ) y+f \left (x \right ) y^{3}-y^{4} = 0 \]

10030

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }+b y^{2} = 0 \]

10031

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }-2 a y^{2}+b y^{3} = 0 \]

10032

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-\left (-1+a y\right ) y^{\prime }+2 a^{2} y^{2}-2 b^{2} y^{3}+a y = 0 \]

10033

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+\left (-1+a y\right ) y^{\prime }-y \left (y+1\right ) \left (b^{2} y^{2}-a^{2}\right ) = 0 \]

10034

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+\left (\tan \left (x \right )+\cot \left (x \right )\right ) y y^{\prime }+\left (\cos \left (x \right )^{2}-n^{2} \cot \left (x \right )^{2}\right ) y^{2} \ln \left (y\right ) = 0 \]

10035

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-f \left (x \right ) y y^{\prime }-g \left (x \right ) y^{2} = 0 \]

10036

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+\left (g \left (x \right )+y^{2} f \left (x \right )\right ) y^{\prime }-y \left (g^{\prime }\left (x \right )-f^{\prime }\left (x \right ) y^{2}\right ) = 0 \]

10037

\[ {}y y^{\prime \prime }-3 {y^{\prime }}^{2}+3 y y^{\prime }-y^{2} = 0 \]

10038

\[ {}y y^{\prime \prime }-a {y^{\prime }}^{2} = 0 \]

10039

\[ {}y y^{\prime \prime }+a \left (1+{y^{\prime }}^{2}\right ) = 0 \]

10040

\[ {}y y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{3} = 0 \]

10041

\[ {}y y^{\prime \prime }+a {y^{\prime }}^{2}+b y y^{\prime }+c y^{2}+d y^{-a +1} = 0 \]

10042

\[ {}y y^{\prime \prime }+a {y^{\prime }}^{2}+f \left (x \right ) y y^{\prime }+g \left (x \right ) y^{2} = 0 \]

10043

\[ {}y y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{2} y^{\prime }+c y^{4} = 0 \]

10044

\[ {}y y^{\prime \prime }-\frac {\left (a -1\right ) {y^{\prime }}^{2}}{a}-f \left (x \right ) y^{2} y^{\prime }+\frac {a f \left (x \right )^{2} y^{4}}{\left (2+a \right )^{2}}-\frac {a f^{\prime }\left (x \right ) y^{3}}{2+a} = 0 \]

10046

\[ {}y^{\prime \prime } \left (x +y\right )+{y^{\prime }}^{2}-y^{\prime } = 0 \]

10047

\[ {}y^{\prime \prime } \left (x -y\right )+2 y^{\prime } \left (1+y^{\prime }\right ) = 0 \]

10048

\[ {}y^{\prime \prime } \left (x -y\right )-\left (1+y^{\prime }\right ) \left (1+{y^{\prime }}^{2}\right ) = 0 \]

10049

\[ {}y^{\prime \prime } \left (x -y\right )-h \left (y^{\prime }\right ) = 0 \]

10053

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}-8 y^{3} = 0 \]