3.4.31 Problems 3001 to 3100

Table 3.397: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

14503

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

14504

\[ {}y^{\prime \prime }-y^{\prime }-y = 0 \]

14505

\[ {}6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

14506

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

14507

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

14508

\[ {}3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

14509

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

14510

\[ {}a y^{\prime \prime }+2 b y^{\prime }+c y = 0 \]

14511

\[ {}y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

14512

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

14513

\[ {}y^{\prime \prime }-6 y^{\prime }-16 y = 0 \]

14514

\[ {}y^{\prime \prime }-16 y = 0 \]

14515

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

14516

\[ {}{y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2} = 0 \]

14517

\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2} = 0 \]

14518

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]

14628

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = 0 \]

14630

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

14632

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 0 \]

14675

\[ {}2 y y^{\prime \prime }+y^{2} = {y^{\prime }}^{2} \]

14710

\[ {}4 x^{2} y^{\prime \prime }-8 x y^{\prime }+5 y = 0 \]

14711

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

14712

\[ {}2 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0 \]

14713

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

14714

\[ {}4 x^{2} y^{\prime \prime }+17 y = 0 \]

14715

\[ {}9 x^{2} y^{\prime \prime }-9 x y^{\prime }+10 y = 0 \]

14716

\[ {}2 x^{2} y^{\prime \prime }-2 x y^{\prime }+20 y = 0 \]

14717

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

14718

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

14719

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

14720

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

14721

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

14740

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

14741

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

14742

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

14743

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

14752

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

14753

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

14754

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

14759

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

14761

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

14763

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

14764

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]

14765

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

14766

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

14768

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

14769

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

14776

\[ {}6 x^{2} y^{\prime \prime }+5 x y^{\prime }-y = 0 \]

14828

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

14829

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14830

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

14831

\[ {}\left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y = 0 \]

14832

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

14833

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

14834

\[ {}6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

14835

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

14836

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

14837

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

14838

\[ {}2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

14839

\[ {}15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

14840

\[ {}20 y^{\prime \prime }+y^{\prime }-y = 0 \]

14841

\[ {}12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

14859

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

14860

\[ {}y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]

14861

\[ {}y^{\prime \prime }+16 y = 0 \]

14862

\[ {}y^{\prime \prime }+25 y = 0 \]

14873

\[ {}y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0 \]

14874

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

14875

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

14876

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

14877

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0 \]

14878

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

14879

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

14880

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

14881

\[ {}5 x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

14882

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+25 y = 0 \]

14893

\[ {}4 x^{\prime \prime }+9 x = 0 \]

14894

\[ {}9 x^{\prime \prime }+4 x = 0 \]

14895

\[ {}x^{\prime \prime }+64 x = 0 \]

14896

\[ {}x^{\prime \prime }+100 x = 0 \]

14897

\[ {}x^{\prime \prime }+x = 0 \]

14898

\[ {}x^{\prime \prime }+4 x = 0 \]

14899

\[ {}x^{\prime \prime }+16 x = 0 \]

14900

\[ {}x^{\prime \prime }+256 x = 0 \]

14901

\[ {}x^{\prime \prime }+9 x = 0 \]

14902

\[ {}10 x^{\prime \prime }+\frac {x}{10} = 0 \]

14903

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

14904

\[ {}\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]

14905

\[ {}\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]

14906

\[ {}4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]

14907

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]

14908

\[ {}x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]

14930

\[ {}x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

14931

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

15178

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

15181

\[ {}y^{\prime \prime }+y = 0 \]

15183

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \]

15190

\[ {}x y^{\prime \prime } = y^{\prime } \]

15191

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

15192

\[ {}x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]