# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}6 y^{\prime \prime }+5 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \] |
✓ |
✓ |
|
\[ {}3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}a y^{\prime \prime }+2 b y^{\prime }+c y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }-16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2} = 0 \] |
✗ |
✓ |
|
\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2} = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \] |
✓ |
✓ |
|
\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime \prime }+y^{2} = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }-8 x y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+17 y = 0 \] |
✓ |
✓ |
|
\[ {}9 x^{2} y^{\prime \prime }-9 x y^{\prime }+10 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-2 x y^{\prime }+20 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}6 x^{2} y^{\prime \prime }+5 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \] |
✓ |
✓ |
|
\[ {}6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}20 y^{\prime \prime }+y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}12 y^{\prime \prime }+8 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+10 y^{\prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}5 x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{\prime \prime }+9 x = 0 \] |
✓ |
✓ |
|
\[ {}9 x^{\prime \prime }+4 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+64 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+100 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+4 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+16 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+256 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+9 x = 0 \] |
✓ |
✓ |
|
\[ {}10 x^{\prime \prime }+\frac {x}{10} = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+4 x^{\prime }+20 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-3 x^{\prime }+4 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = y^{\prime } \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \] |
✓ |
✓ |
|