3.6.2 Problems 101 to 200

Table 3.443: Second order non-linear ODE

#

ODE

Mathematica

Maple

6827

\[ {}2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

6830

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

6831

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

6833

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

6835

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]

6836

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]

6837

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

6838

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

6839

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]

6840

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]

6842

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

6843

\[ {}y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2} \]

6844

\[ {}2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \]

6845

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

6846

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

6847

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \]

6848

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-y y^{\prime } \cos \left (y\right )\right ) \]

6849

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

6850

\[ {}\left (y y^{\prime \prime }+{y^{\prime }}^{2}+1\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3} \]

6851

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right ) \]

6852

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \]

6853

\[ {}x y^{\prime \prime } = y^{\prime } \left (2-3 x y^{\prime }\right ) \]

6854

\[ {}x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right ) \]

6855

\[ {}y^{\prime \prime } = 2 x +\left (x^{2}-y^{\prime }\right )^{2} \]

6856

\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime }+x^{2} = 0 \]

6857

\[ {}{y^{\prime \prime }}^{2}-x y^{\prime \prime }+y^{\prime } = 0 \]

6858

\[ {}{y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right ) \]

6859

\[ {}3 y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}-1 \]

6860

\[ {}4 y {y^{\prime }}^{2} y^{\prime \prime } = {y^{\prime }}^{4}+3 \]

7106

\[ {}y y^{\prime \prime } = 1 \]

7107

\[ {}y y^{\prime \prime } = x \]

7108

\[ {}y^{2} y^{\prime \prime } = x \]

7110

\[ {}3 y y^{\prime \prime } = \sin \left (x \right ) \]

7111

\[ {}3 y y^{\prime \prime }+y = 5 \]

7112

\[ {}a y y^{\prime \prime }+b y = c \]

7113

\[ {}a y^{2} y^{\prime \prime }+b y^{2} = c \]

7131

\[ {}y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \]

7135

\[ {}y^{\prime \prime }-y y^{\prime } = 2 x \]

7211

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

7212

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x \]

7213

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1 \]

7214

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \]

7215

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

7216

\[ {}y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \]

7217

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

7294

\[ {}y^{\prime \prime } = A y^{\frac {2}{3}} \]

7315

\[ {}y^{\prime \prime }+{\mathrm e}^{y} = 0 \]

7402

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

7403

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

7405

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = 1 \]

7406

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

7408

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = x \]

7409

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = x \]

7411

\[ {}{y^{\prime \prime }}^{2}+y^{\prime }+y = 0 \]

7412

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+y = 0 \]

7434

\[ {}y {y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

7435

\[ {}y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3} = 0 \]

7436

\[ {}y^{2} {y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

7437

\[ {}y {y^{\prime \prime }}^{4}+{y^{\prime }}^{2} = 0 \]

7438

\[ {}y^{3} {y^{\prime \prime }}^{2}+y y^{\prime } = 0 \]

7439

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

7440

\[ {}y {y^{\prime \prime }}^{3}+y^{3} y^{\prime } = 0 \]

7441

\[ {}y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5} = 0 \]

7442

\[ {}y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0 \]

7443

\[ {}y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y {y^{\prime }}^{2} = 0 \]

7444

\[ {}y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y^{2} {y^{\prime }}^{2} = 0 \]

7445

\[ {}y^{\prime \prime }+\left (\sin \left (x \right )+2 x \right ) y^{\prime }+\cos \left (y\right ) y {y^{\prime }}^{2} = 0 \]

7446

\[ {}y^{\prime } y^{\prime \prime }+y^{2} = 0 \]

7447

\[ {}y^{\prime } y^{\prime \prime }+y^{n} = 0 \]

7449

\[ {}y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (y^{2}+3\right ) {y^{\prime }}^{2} = 0 \]

7450

\[ {}y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0 \]

7451

\[ {}y^{\prime \prime }+y^{\prime } \sin \left (x \right )+{y^{\prime }}^{2} = 0 \]

7452

\[ {}3 y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \]

7453

\[ {}10 y^{\prime \prime }+x^{2} y^{\prime }+\frac {3 {y^{\prime }}^{2}}{y} = 0 \]

7454

\[ {}10 y^{\prime \prime }+\left ({\mathrm e}^{x}+3 x \right ) y^{\prime }+\frac {3 \,{\mathrm e}^{y} {y^{\prime }}^{2}}{\sin \left (y\right )} = 0 \]

7477

\[ {}x^{2} y^{\prime \prime }+\left (-y+x y^{\prime }\right )^{2} = 0 \]

8386

\[ {}y^{\prime }+a \phi ^{\prime }\left (x \right ) y^{3}+6 a \phi \left (x \right ) y^{2}+\frac {\left (2 a +1\right ) y \phi ^{\prime \prime }\left (x \right )}{\phi ^{\prime }\left (x \right )}+2+2 a = 0 \]

9914

\[ {}y^{\prime \prime }-y^{2} = 0 \]

9915

\[ {}y^{\prime \prime }-6 y^{2} = 0 \]

9916

\[ {}y^{\prime \prime }-6 y^{2}-x = 0 \]

9917

\[ {}y^{\prime \prime }-6 y^{2}+4 y = 0 \]

9918

\[ {}y^{\prime \prime }+a y^{2}+b x +c = 0 \]

9919

\[ {}y^{\prime \prime }-2 y^{3}-x y+a = 0 \]

9920

\[ {}y^{\prime \prime }-a y^{3} = 0 \]

9921

\[ {}y^{\prime \prime }-2 a^{2} y^{3}+2 a b x y-b = 0 \]

9922

\[ {}y^{\prime \prime }+d +b x y+c y+a y^{3} = 0 \]

9923

\[ {}y^{\prime \prime }+d +b y^{2}+c y+a y^{3} = 0 \]

9924

\[ {}y^{\prime \prime }+a \,x^{r} y^{2} = 0 \]

9925

\[ {}y^{\prime \prime }+6 a^{10} y^{11}-y = 0 \]

9926

\[ {}y^{\prime \prime }-\frac {1}{\left (a y^{2}+b x y+c \,x^{2}+\alpha y+\beta x +\gamma \right )^{\frac {3}{2}}} = 0 \]

9927

\[ {}y^{\prime \prime }-{\mathrm e}^{y} = 0 \]

9928

\[ {}y^{\prime \prime }+a \,{\mathrm e}^{x} \sqrt {y} = 0 \]

9929

\[ {}y^{\prime \prime }+{\mathrm e}^{x} \sin \left (y\right ) = 0 \]

9930

\[ {}y^{\prime \prime }+a \sin \left (y\right ) = 0 \]

9931

\[ {}y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta \sin \left (x \right ) = 0 \]

9932

\[ {}y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta f \left (x \right ) = 0 \]

9933

\[ {}y^{\prime \prime } = \frac {f \left (\frac {y}{\sqrt {x}}\right )}{x^{\frac {3}{2}}} \]

9934

\[ {}y^{\prime \prime }-3 y^{\prime }-y^{2}-2 y = 0 \]

9935

\[ {}y^{\prime \prime }-7 y^{\prime }-y^{\frac {3}{2}}+12 y = 0 \]

9936

\[ {}y^{\prime \prime }+5 a y^{\prime }-6 y^{2}+6 a^{2} y = 0 \]