# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 2 y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 2 y y^{\prime } \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = 2 y y^{\prime } \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = 2 y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x^{2} y^{\prime }+4 y = y^{3} \] |
✗ |
✗ |
|
\[ {}\left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}x {y^{\prime \prime }}^{2}+2 y = 2 x \] |
✗ |
✗ |
|
\[ {}x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \] |
✗ |
✗ |
|
\[ {}{y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2} = 0 \] |
✗ |
✓ |
|
\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2} = 0 \] |
✗ |
✓ |
|
\[ {}{\mathrm e}^{-2 t} \left (y y^{\prime \prime }-{y^{\prime }}^{2}\right )-2 t \left (t +1\right ) y = 0 \] |
✗ |
✗ |
|
\[ {}2 y y^{\prime \prime }+y^{2} = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+y y^{\prime \prime } = 1 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime } = \frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \sqrt {-{y^{\prime }}^{2}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \sqrt {1+y^{\prime }} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = y^{\prime } \left (1+y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 2 y y^{\prime } \] |
✗ |
✓ |
|
\[ {}3 y^{\prime } y^{\prime \prime } = 2 y \] |
✗ |
✓ |
|
\[ {}2 y^{\prime \prime } = 3 y^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = 1+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{3} y^{\prime \prime } = -1 \] |
✓ |
✗ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = {\mathrm e}^{2 y} \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+{x^{\prime }}^{2}+x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0 \] |
✗ |
✗ |
|
\[ {}x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }} = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0 \] |
✗ |
✗ |
|
\[ {}x^{\prime \prime }+x {x^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+\left (x+2\right ) x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-x^{\prime }+x-x^{2} = 0 \] |
✗ |
✗ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \] |
✓ |
✓ |
|