3.6.6 Problems 501 to 550

Table 3.451: Second order non-linear ODE

#

ODE

Mathematica

Maple

13519

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

13520

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

13521

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

13522

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

13523

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

13524

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

13525

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

13529

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+4 y = y^{3} \]

13532

\[ {}\left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{3} \]

13814

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

13840

\[ {}x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3} \]

14050

\[ {}x {y^{\prime \prime }}^{2}+2 y = 2 x \]

14051

\[ {}x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]

14516

\[ {}{y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2} = 0 \]

14517

\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2} = 0 \]

14626

\[ {}{\mathrm e}^{-2 t} \left (y y^{\prime \prime }-{y^{\prime }}^{2}\right )-2 t \left (t +1\right ) y = 0 \]

14675

\[ {}2 y y^{\prime \prime }+y^{2} = {y^{\prime }}^{2} \]

14892

\[ {}t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime } = 1 \]

15178

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

15183

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \]

15184

\[ {}{y^{\prime }}^{2}+y y^{\prime \prime } = 1 \]

15196

\[ {}2 y^{\prime \prime } = \frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }} \]

15199

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

15200

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

15201

\[ {}y^{\prime \prime } = \sqrt {-{y^{\prime }}^{2}+1} \]

15202

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

15203

\[ {}y^{\prime \prime } = \sqrt {1+y^{\prime }} \]

15204

\[ {}y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \]

15206

\[ {}y^{\prime \prime } = y^{\prime } \left (1+y^{\prime }\right ) \]

15207

\[ {}3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \]

15209

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]

15210

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

15211

\[ {}3 y^{\prime } y^{\prime \prime } = 2 y \]

15212

\[ {}2 y^{\prime \prime } = 3 y^{2} \]

15213

\[ {}{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

15214

\[ {}y y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2} \]

15215

\[ {}y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

15216

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

15217

\[ {}y^{3} y^{\prime \prime } = -1 \]

15218

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} y^{\prime } \]

15219

\[ {}y^{\prime \prime } = {\mathrm e}^{2 y} \]

15220

\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2} \]

15443

\[ {}x^{\prime \prime }+{x^{\prime }}^{2}+x = 0 \]

15444

\[ {}x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0 \]

15445

\[ {}x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }} = 0 \]

15446

\[ {}x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0 \]

15447

\[ {}x^{\prime \prime }+x {x^{\prime }}^{2} = 0 \]

15448

\[ {}x^{\prime \prime }+\left (x+2\right ) x^{\prime } = 0 \]

15449

\[ {}x^{\prime \prime }-x^{\prime }+x-x^{2} = 0 \]

15454

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]