3.8.11 Problems 1001 to 1054

Table 3.505: Third and higher order ode

#

ODE

Mathematica

Maple

15243

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

15260

\[ {}y^{\prime \prime \prime }+y = x \]

15261

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 1 \]

15262

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 \]

15263

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 3 \]

15264

\[ {}y^{\prime \prime \prime \prime }-y = 1 \]

15265

\[ {}y^{\prime \prime \prime \prime }-y^{\prime } = 2 \]

15266

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 3 \]

15267

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = 4 \]

15268

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 1 \]

15269

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{4 x} \]

15270

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{-x} \]

15271

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{-x} \]

15272

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

15273

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \cos \left (x \right ) \]

15274

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) x \]

15275

\[ {}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = a \sin \left (n x +\alpha \right ) \]

15276

\[ {}y^{\prime \prime \prime \prime }-2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (n x +\alpha \right ) \]

15277

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (x \right ) \]

15278

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

15279

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = x \,{\mathrm e}^{x} \]

15283

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 1 \]

15284

\[ {}5 y^{\prime \prime \prime }-7 y^{\prime \prime } = 3 \]

15285

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime } = -6 \]

15286

\[ {}3 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 2 \]

15287

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 1 \]

15310

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2}+x \]

15311

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

15313

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = x^{2}+x \]

15316

\[ {}y^{\prime \prime \prime }-y = \sin \left (x \right ) \]

15317

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

15318

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \cos \left (2 x \right ) \]

15324

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } = 1+{\mathrm e}^{x} \]

15325

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (2 x \right ) \]

15335

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = x \,{\mathrm e}^{x}+\frac {\cos \left (x \right )}{2} \]

15337

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime } = {\mathrm e}^{x}+3 \sin \left (2 x \right )+1 \]

15353

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 2 x +{\mathrm e}^{x} \]

15355

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 4 x +3 \sin \left (x \right )+\cos \left (x \right ) \]

15356

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = {\mathrm e}^{2 x} x +\sin \left (x \right )+x^{2} \]

15357

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime } = x \,{\mathrm e}^{x}-1 \]

15358

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime } = x +2 \,{\mathrm e}^{-x} \]

15373

\[ {}y^{\prime \prime \prime }-y^{\prime } = -2 x \]

15374

\[ {}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

15375

\[ {}y^{\prime \prime \prime }-y = 2 x \]

15376

\[ {}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

15393

\[ {}x^{2} y^{\prime \prime \prime }-3 x y^{\prime \prime }+3 y^{\prime } = 0 \]

15394

\[ {}x^{2} y^{\prime \prime \prime } = 2 y^{\prime } \]

15395

\[ {}\left (1+x \right )^{2} y^{\prime \prime \prime }-12 y^{\prime } = 0 \]

15396

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime \prime }+2 \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

15426

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = \frac {-1+x}{x^{3}} \]

15463

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

15464

\[ {}y^{\prime \prime \prime \prime }-\lambda ^{4} y = 0 \]

15466

\[ {}x^{2} y^{\prime \prime \prime \prime }+4 x y^{\prime \prime \prime }+2 y^{\prime \prime } = 0 \]

15467

\[ {}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime } = 0 \]