3.9.11 Problems 1001 to 1100

Table 3.527: First order ode linear in derivative




#

ODE

Mathematica

Maple





2666

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]





2667

\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \]





2668

\[ {}\sin \left (\frac {y}{x}\right ) \left (-y+x y^{\prime }\right ) = x \cos \left (\frac {y}{x}\right ) \]





2669

\[ {}x y^{\prime } = \sqrt {16 x^{2}-y^{2}}+y \]





2670

\[ {}-y+x y^{\prime } = \sqrt {9 x^{2}+y^{2}} \]





2671

\[ {}y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime } = 0 \]





2672

\[ {}x y^{\prime }+y \ln \left (x \right ) = y \ln \left (y\right ) \]





2673

\[ {}y^{\prime } = \frac {y^{2}+2 x y-2 x^{2}}{x^{2}-x y+y^{2}} \]





2674

\[ {}2 x y y^{\prime }-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}-2 y^{2} = 0 \]





2675

\[ {}x^{2} y^{\prime } = y^{2}+3 x y+x^{2} \]





2676

\[ {}y y^{\prime } = \sqrt {x^{2}+y^{2}}-x \]





2677

\[ {}2 x \left (y+2 x \right ) y^{\prime } = y \left (4 x -y\right ) \]





2678

\[ {}x y^{\prime } = x \tan \left (\frac {y}{x}\right )+y \]





2679

\[ {}y^{\prime } = \frac {x \sqrt {x^{2}+y^{2}}+y^{2}}{x y} \]





2680

\[ {}y^{\prime } = \frac {-2 x +4 y}{x +y} \]





2681

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]





2682

\[ {}y^{\prime } = \frac {y-\sqrt {x^{2}+y^{2}}}{x} \]





2683

\[ {}-y+x y^{\prime } = \sqrt {4 x^{2}-y^{2}} \]





2684

\[ {}y^{\prime } = \frac {a y+x}{a x -y} \]





2685

\[ {}y^{\prime } = \frac {x +\frac {y}{2}}{\frac {x}{2}-y} \]





2686

\[ {}y^{\prime }-\frac {y}{x} = \frac {4 x^{2} \cos \left (x \right )}{y} \]





2687

\[ {}y^{\prime }+\frac {y \tan \left (x \right )}{2} = 2 y^{3} \sin \left (x \right ) \]





2688

\[ {}y^{\prime }-\frac {3 y}{2 x} = 6 y^{\frac {1}{3}} x^{2} \ln \left (x \right ) \]





2689

\[ {}y^{\prime }+\frac {2 y}{x} = 6 \sqrt {x^{2}+1}\, \sqrt {y} \]





2690

\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \]





2691

\[ {}2 x \left (y^{\prime }+x^{2} y^{3}\right )+y = 0 \]





2692

\[ {}\left (x -a \right ) \left (x -b \right ) \left (y^{\prime }-\sqrt {y}\right ) = 2 \left (-a +b \right ) y \]





2693

\[ {}y^{\prime }+\frac {6 y}{x} = \frac {3 y^{\frac {2}{3}} \cos \left (x \right )}{x} \]





2694

\[ {}y^{\prime }+4 x y = 4 x^{3} \sqrt {y} \]





2695

\[ {}y^{\prime }-\frac {y}{2 x \ln \left (x \right )} = 2 x y^{3} \]





2696

\[ {}y^{\prime }-\frac {y}{\left (\pi -1\right ) x} = \frac {3 x y^{\pi }}{1-\pi } \]





2697

\[ {}2 y^{\prime }+y \cot \left (x \right ) = \frac {8 \cos \left (x \right )^{3}}{y} \]





2698

\[ {}\left (1-\sqrt {3}\right ) y^{\prime }+y \sec \left (x \right ) = y^{\sqrt {3}} \sec \left (x \right ) \]





2699

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = x y^{2} \]





2700

\[ {}y^{\prime }+y \cot \left (x \right ) = y^{3} \sin \left (x \right )^{3} \]





2701

\[ {}y^{\prime } = \left (9 x -y\right )^{2} \]





2702

\[ {}y^{\prime } = \left (4 x +y+2\right )^{2} \]





2703

\[ {}y^{\prime } = \sin \left (3 x -3 y+1\right )^{2} \]





2704

\[ {}y^{\prime } = \frac {y \left (\ln \left (x y\right )-1\right )}{x} \]





2705

\[ {}y^{\prime } = 2 x \left (x +y\right )^{2}-1 \]





2706

\[ {}y^{\prime } = \frac {x +2 y-1}{2 x -y+3} \]





2707

\[ {}y^{\prime }+p \left (x \right ) y+q \left (x \right ) y^{2} = r \left (x \right ) \]





2708

\[ {}y^{\prime }+\frac {2 y}{x}-y^{2} = -\frac {2}{x^{2}} \]





2709

\[ {}y^{\prime }+\frac {7 y}{x}-3 y^{2} = \frac {3}{x^{2}} \]





2710

\[ {}\frac {y^{\prime }}{y}+p \left (x \right ) \ln \left (y\right ) = q \left (x \right ) \]





2711

\[ {}\frac {y^{\prime }}{y}-\frac {2 \ln \left (y\right )}{x} = \frac {1-2 \ln \left (x \right )}{x} \]





2712

\[ {}\sec \left (y\right )^{2} y^{\prime }+\frac {\tan \left (y\right )}{2 \sqrt {1+x}} = \frac {1}{2 \sqrt {1+x}} \]





2713

\[ {}{\mathrm e}^{x y} y+\left (2 y-{\mathrm e}^{x y} x \right ) y^{\prime } = 0 \]





2714

\[ {}\cos \left (x y\right )-x y \sin \left (x y\right )-x^{2} \sin \left (x y\right ) y^{\prime } = 0 \]





2715

\[ {}y+3 x^{2}+x y^{\prime } = 0 \]





2716

\[ {}2 x \,{\mathrm e}^{y}+\left (3 y^{2}+x^{2} {\mathrm e}^{y}\right ) y^{\prime } = 0 \]





2717

\[ {}2 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]





2718

\[ {}y^{2}-2 x +2 x y y^{\prime } = 0 \]





2719

\[ {}4 \,{\mathrm e}^{2 x}+2 x y-y^{2}+\left (x -y\right )^{2} y^{\prime } = 0 \]





2720

\[ {}\frac {1}{x}-\frac {y}{x^{2}+y^{2}}+\frac {x y^{\prime }}{x^{2}+y^{2}} = 0 \]





2721

\[ {}y \cos \left (x y\right )-\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0 \]





2722

\[ {}2 y^{2} {\mathrm e}^{2 x}+3 x^{2}+2 y \,{\mathrm e}^{2 x} y^{\prime } = 0 \]





2723

\[ {}y^{2}+\cos \left (x \right )+\left (2 x y+\sin \left (y\right )\right ) y^{\prime } = 0 \]





2724

\[ {}\sin \left (y\right )+\cos \left (x \right ) y+\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime } = 0 \]





2839

\[ {}y^{\prime }-2 y = 6 \,{\mathrm e}^{5 t} \]





2840

\[ {}y+y^{\prime } = 8 \,{\mathrm e}^{3 t} \]





2841

\[ {}y^{\prime }+3 y = 2 \,{\mathrm e}^{-t} \]





2842

\[ {}y^{\prime }+2 y = 4 t \]





2843

\[ {}y^{\prime }-y = 6 \cos \left (t \right ) \]





2844

\[ {}y^{\prime }-y = 5 \sin \left (2 t \right ) \]





2845

\[ {}y+y^{\prime } = 5 \,{\mathrm e}^{t} \sin \left (t \right ) \]





2867

\[ {}y^{\prime }+2 y = 2 \operatorname {Heaviside}\left (-1+t \right ) \]





2868

\[ {}y^{\prime }-2 y = \operatorname {Heaviside}\left (t -2\right ) {\mathrm e}^{t -2} \]





2869

\[ {}y^{\prime }-y = 4 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \sin \left (t +\frac {\pi }{4}\right ) \]





2870

\[ {}y^{\prime }+2 y = \operatorname {Heaviside}\left (t -\pi \right ) \sin \left (2 t \right ) \]





2871

\[ {}y^{\prime }+3 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]





2872

\[ {}y^{\prime }-3 y = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\frac {\pi }{2} \\ 1 & \frac {\pi }{2}\le t \end {array}\right . \]





2873

\[ {}y^{\prime }-3 y = -10 \,{\mathrm e}^{-t +a} \sin \left (-2 t +2 a \right ) \operatorname {Heaviside}\left (t -a \right ) \]





2882

\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]





2883

\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]





2884

\[ {}y+y^{\prime } = \delta \left (t -5\right ) \]





2885

\[ {}y^{\prime }-2 y = \delta \left (t -2\right ) \]





2886

\[ {}y^{\prime }+4 y = 3 \delta \left (-1+t \right ) \]





2887

\[ {}y^{\prime }-5 y = 2 \,{\mathrm e}^{-t}+\delta \left (t -3\right ) \]





2988

\[ {}5 x y+4 y^{2}+1+\left (x^{2}+2 x y\right ) y^{\prime } = 0 \]





2989

\[ {}2 x \tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \]





2990

\[ {}y^{2} \left (x^{2}+1\right )+y+\left (2 x y+1\right ) y^{\prime } = 0 \]





2991

\[ {}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0 \]





2992

\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \]





2993

\[ {}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0 \]





2994

\[ {}x -2 y-3+\left (2 x +y-1\right ) y^{\prime } = 0 \]





2995

\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \]





2996

\[ {}3 x -y-6+\left (x +y+2\right ) y^{\prime } = 0 \]





2997

\[ {}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0 \]





3001

\[ {}x^{2} y^{\prime } = x \left (y-1\right )+\left (y-1\right )^{2} \]





3002

\[ {}y^{\prime } = {\mathrm e}^{-x} \]





3003

\[ {}y^{\prime } = 1-x^{5}+\sqrt {x} \]





3004

\[ {}3 y-2 x +\left (3 x -2\right ) y^{\prime } = 0 \]





3005

\[ {}x^{2}+x -1+\left (2 x y+y\right ) y^{\prime } = 0 \]





3006

\[ {}{\mathrm e}^{2 y}+\left (1+x \right ) y^{\prime } = 0 \]





3007

\[ {}\left (1+x \right ) y^{\prime }-y^{2} x^{2} = 0 \]





3008

\[ {}y^{\prime } = \frac {-2 x +y}{x} \]





3009

\[ {}x^{3}+y^{3}-y^{2} y^{\prime } x = 0 \]





3010

\[ {}y^{\prime }+y = 0 \]





3011

\[ {}y^{\prime }+y = x^{2}+2 \]