# |
ODE |
Mathematica |
Maple |
\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \] |
✓ |
✓ |
|
\[ {}\sin \left (\frac {y}{x}\right ) \left (-y+x y^{\prime }\right ) = x \cos \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sqrt {16 x^{2}-y^{2}}+y \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \sqrt {9 x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y \ln \left (x \right ) = y \ln \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}+2 x y-2 x^{2}}{x^{2}-x y+y^{2}} \] |
✓ |
✓ |
|
\[ {}2 x y y^{\prime }-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}-2 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y^{2}+3 x y+x^{2} \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = \sqrt {x^{2}+y^{2}}-x \] |
✓ |
✓ |
|
\[ {}2 x \left (y+2 x \right ) y^{\prime } = y \left (4 x -y\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x \tan \left (\frac {y}{x}\right )+y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x \sqrt {x^{2}+y^{2}}+y^{2}}{x y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-2 x +4 y}{x +y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y-\sqrt {x^{2}+y^{2}}}{x} \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \sqrt {4 x^{2}-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {a y+x}{a x -y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +\frac {y}{2}}{\frac {x}{2}-y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{x} = \frac {4 x^{2} \cos \left (x \right )}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y \tan \left (x \right )}{2} = 2 y^{3} \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {3 y}{2 x} = 6 y^{\frac {1}{3}} x^{2} \ln \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 y}{x} = 6 \sqrt {x^{2}+1}\, \sqrt {y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \] |
✓ |
✓ |
|
\[ {}2 x \left (y^{\prime }+x^{2} y^{3}\right )+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -a \right ) \left (x -b \right ) \left (y^{\prime }-\sqrt {y}\right ) = 2 \left (-a +b \right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {6 y}{x} = \frac {3 y^{\frac {2}{3}} \cos \left (x \right )}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 x y = 4 x^{3} \sqrt {y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{2 x \ln \left (x \right )} = 2 x y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{\left (\pi -1\right ) x} = \frac {3 x y^{\pi }}{1-\pi } \] |
✓ |
✓ |
|
\[ {}2 y^{\prime }+y \cot \left (x \right ) = \frac {8 \cos \left (x \right )^{3}}{y} \] |
✓ |
✓ |
|
\[ {}\left (1-\sqrt {3}\right ) y^{\prime }+y \sec \left (x \right ) = y^{\sqrt {3}} \sec \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = x y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cot \left (x \right ) = y^{3} \sin \left (x \right )^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (9 x -y\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (4 x +y+2\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (3 x -3 y+1\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y \left (\ln \left (x y\right )-1\right )}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x \left (x +y\right )^{2}-1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +2 y-1}{2 x -y+3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+p \left (x \right ) y+q \left (x \right ) y^{2} = r \left (x \right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime }+\frac {2 y}{x}-y^{2} = -\frac {2}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {7 y}{x}-3 y^{2} = \frac {3}{x^{2}} \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{y}+p \left (x \right ) \ln \left (y\right ) = q \left (x \right ) \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{y}-\frac {2 \ln \left (y\right )}{x} = \frac {1-2 \ln \left (x \right )}{x} \] |
✓ |
✓ |
|
\[ {}\sec \left (y\right )^{2} y^{\prime }+\frac {\tan \left (y\right )}{2 \sqrt {1+x}} = \frac {1}{2 \sqrt {1+x}} \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x y} y+\left (2 y-{\mathrm e}^{x y} x \right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}\cos \left (x y\right )-x y \sin \left (x y\right )-x^{2} \sin \left (x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y+3 x^{2}+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x \,{\mathrm e}^{y}+\left (3 y^{2}+x^{2} {\mathrm e}^{y}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}-2 x +2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}4 \,{\mathrm e}^{2 x}+2 x y-y^{2}+\left (x -y\right )^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {1}{x}-\frac {y}{x^{2}+y^{2}}+\frac {x y^{\prime }}{x^{2}+y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}y \cos \left (x y\right )-\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{2} {\mathrm e}^{2 x}+3 x^{2}+2 y \,{\mathrm e}^{2 x} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+\cos \left (x \right )+\left (2 x y+\sin \left (y\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sin \left (y\right )+\cos \left (x \right ) y+\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = 6 \,{\mathrm e}^{5 t} \] |
✓ |
✓ |
|
\[ {}y+y^{\prime } = 8 \,{\mathrm e}^{3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 y = 2 \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = 4 t \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 6 \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 5 \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y+y^{\prime } = 5 \,{\mathrm e}^{t} \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = 2 \operatorname {Heaviside}\left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = \operatorname {Heaviside}\left (t -2\right ) {\mathrm e}^{t -2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 4 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \sin \left (t +\frac {\pi }{4}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = \operatorname {Heaviside}\left (t -\pi \right ) \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime }-3 y = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\frac {\pi }{2} \\ 1 & \frac {\pi }{2}\le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime }-3 y = -10 \,{\mathrm e}^{-t +a} \sin \left (-2 t +2 a \right ) \operatorname {Heaviside}\left (t -a \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y+y^{\prime } = \delta \left (t -5\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = \delta \left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 y = 3 \delta \left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-5 y = 2 \,{\mathrm e}^{-t}+\delta \left (t -3\right ) \] |
✓ |
✓ |
|
\[ {}5 x y+4 y^{2}+1+\left (x^{2}+2 x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x \tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} \left (x^{2}+1\right )+y+\left (2 x y+1\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -2 y-3+\left (2 x +y-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x -y-6+\left (x +y+2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = x \left (y-1\right )+\left (y-1\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-x^{5}+\sqrt {x} \] |
✓ |
✓ |
|
\[ {}3 y-2 x +\left (3 x -2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+x -1+\left (2 x y+y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{2 y}+\left (1+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) y^{\prime }-y^{2} x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-2 x +y}{x} \] |
✓ |
✓ |
|
\[ {}x^{3}+y^{3}-y^{2} y^{\prime } x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = x^{2}+2 \] |
✓ |
✓ |
|
|
|||
|
|||