3.9.11 Problems 1001 to 1100

Table 3.527: First order ode linear in derivative




#

ODE

Mathematica

Maple





2666

(3xy)y=3y





2667

y=(x+y)22x2





2668

sin(yx)(y+xy)=xcos(yx)





2669

xy=16x2y2+y





2670

y+xy=9x2+y2





2671

y(x2y2)x(x2y2)y=0





2672

xy+yln(x)=yln(y)





2673

y=y2+2xy2x2x2xy+y2





2674

2xyyx2ey2x22y2=0





2675

x2y=y2+3xy+x2





2676

yy=x2+y2x





2677

2x(y+2x)y=y(4xy)





2678

xy=xtan(yx)+y





2679

y=xx2+y2+y2xy





2680

y=2x+4yx+y





2681

y=2xyx+4y





2682

y=yx2+y2x





2683

y+xy=4x2y2





2684

y=ay+xaxy





2685

y=x+y2x2y





2686

yyx=4x2cos(x)y





2687

y+ytan(x)2=2y3sin(x)





2688

y3y2x=6y13x2ln(x)





2689

y+2yx=6x2+1y





2690

y+2yx=6x4y2





2691

2x(y+x2y3)+y=0





2692

(xa)(xb)(yy)=2(a+b)y





2693

y+6yx=3y23cos(x)x





2694

y+4xy=4x3y





2695

yy2xln(x)=2xy3





2696

yy(π1)x=3xyπ1π





2697

2y+ycot(x)=8cos(x)3y





2698

(13)y+ysec(x)=y3sec(x)





2699

y+2xyx2+1=xy2





2700

y+ycot(x)=y3sin(x)3





2701

y=(9xy)2





2702

y=(4x+y+2)2





2703

y=sin(3x3y+1)2





2704

y=y(ln(xy)1)x





2705

y=2x(x+y)21





2706

y=x+2y12xy+3





2707

y+p(x)y+q(x)y2=r(x)





2708

y+2yxy2=2x2





2709

y+7yx3y2=3x2





2710

yy+p(x)ln(y)=q(x)





2711

yy2ln(y)x=12ln(x)x





2712

sec(y)2y+tan(y)21+x=121+x





2713

exyy+(2yexyx)y=0





2714

cos(xy)xysin(xy)x2sin(xy)y=0





2715

y+3x2+xy=0





2716

2xey+(3y2+x2ey)y=0





2717

2xy+(x2+1)y=0





2718

y22x+2xyy=0





2719

4e2x+2xyy2+(xy)2y=0





2720

1xyx2+y2+xyx2+y2=0





2721

ycos(xy)sin(x)+xcos(xy)y=0





2722

2y2e2x+3x2+2ye2xy=0





2723

y2+cos(x)+(2xy+sin(y))y=0





2724

sin(y)+cos(x)y+(xcos(y)+sin(x))y=0





2839

y2y=6e5t





2840

y+y=8e3t





2841

y+3y=2et





2842

y+2y=4t





2843

yy=6cos(t)





2844

yy=5sin(2t)





2845

y+y=5etsin(t)





2867

y+2y=2Heaviside(1+t)





2868

y2y=Heaviside(t2)et2





2869

yy=4Heaviside(tπ4)sin(t+π4)





2870

y+2y=Heaviside(tπ)sin(2t)





2871

y+3y={10t<101t





2872

y3y={sin(t)0t<π21π2t





2873

y3y=10et+asin(2t+2a)Heaviside(ta)





2882

yy={20t<111t





2883

yy={20t<111t





2884

y+y=δ(t5)





2885

y2y=δ(t2)





2886

y+4y=3δ(1+t)





2887

y5y=2et+δ(t3)





2988

5xy+4y2+1+(x2+2xy)y=0





2989

2xtan(y)+(xx2tan(y))y=0





2990

y2(x2+1)+y+(2xy+1)y=0





2991

4xy2+6y+(5x2y+8x)y=0





2992

5x+2y+1+(2x+y+1)y=0





2993

3xy+1(6x2y3)y=0





2994

x2y3+(2x+y1)y=0





2995

6x+4y+1+(4x+2y+2)y=0





2996

3xy6+(x+y+2)y=0





2997

2x+3y+1+(4x+6y+1)y=0





3001

x2y=x(y1)+(y1)2





3002

y=ex





3003

y=1x5+x





3004

3y2x+(3x2)y=0





3005

x2+x1+(2xy+y)y=0





3006

e2y+(1+x)y=0





3007

(1+x)yy2x2=0





3008

y=2x+yx





3009

x3+y3y2yx=0





3010

y+y=0





3011

y+y=x2+2