3.9.13 Problems 1201 to 1300

Table 3.531: First order ode linear in derivative

#

ODE

Mathematica

Maple

3112

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 x \csc \left (x \right ) \]

3113

\[ {}2 y-x^{3} = x y^{\prime } \]

3114

\[ {}\left (1-x y\right ) y^{\prime } = y^{2} \]

3115

\[ {}2 x +3 y+1+\left (2 y-3 x +5\right ) y^{\prime } = 0 \]

3116

\[ {}x y^{\prime } = \sqrt {x^{2}+y^{2}} \]

3117

\[ {}y^{2} = \left (x^{3}-x y\right ) y^{\prime } \]

3118

\[ {}x^{2}+y^{3}+y = \left (x^{3} y^{2}-x \right ) y^{\prime } \]

3119

\[ {}x y^{\prime }+y = x \cos \left (x \right ) \]

3120

\[ {}\left (x y-x^{2}\right ) y^{\prime } = y^{2} \]

3121

\[ {}\left ({\mathrm e}^{x}-3 y^{2} x^{2}\right ) y^{\prime }+{\mathrm e}^{x} y = 2 x y^{3} \]

3122

\[ {}x^{2}+y = x y^{\prime } \]

3123

\[ {}x y^{\prime }+y = \cos \left (x \right ) x^{2} \]

3124

\[ {}6 x +4 y+3+\left (3 x +2 y+2\right ) y^{\prime } = 0 \]

3125

\[ {}\cos \left (x +y\right )-x \sin \left (x +y\right ) = x \sin \left (x +y\right ) y^{\prime } \]

3126

\[ {}y^{2} {\mathrm e}^{x y}+\cos \left (x \right )+\left ({\mathrm e}^{x y}+x y \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

3127

\[ {}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right ) \]

3128

\[ {}2 x y+y^{\prime } = {\mathrm e}^{-x^{2}} \]

3129

\[ {}y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime } \]

3130

\[ {}2 x y+\left (x^{2}+1\right ) y^{\prime } = 4 x^{3} \]

3131

\[ {}{\mathrm e}^{x} \sin \left (y\right )-y \sin \left (x y\right )+\left ({\mathrm e}^{x} \cos \left (y\right )-x \sin \left (x y\right )\right ) y^{\prime } = 0 \]

3132

\[ {}\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 2 x y-{\mathrm e}^{y}-x \]

3133

\[ {}{\mathrm e}^{x} \left (1+x \right ) = \left (x \,{\mathrm e}^{x}-y \,{\mathrm e}^{y}\right ) y^{\prime } \]

3134

\[ {}2 x y+x^{2} y^{\prime } = 0 \]

3135

\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \]

3136

\[ {}y^{\prime } \ln \left (x \right )+\frac {x +y}{x} = 0 \]

3137

\[ {}\cos \left (y\right )-x \sin \left (y\right ) y^{\prime } = \sec \left (x \right )^{2} \]

3138

\[ {}y \sin \left (\frac {x}{y}\right )+x \cos \left (\frac {x}{y}\right )-1+\left (x \sin \left (\frac {x}{y}\right )-\frac {x^{2} \cos \left (\frac {x}{y}\right )}{y}\right ) y^{\prime } = 0 \]

3139

\[ {}\frac {x}{x^{2}+y^{2}}+\frac {y}{x^{2}}+\left (\frac {y}{x^{2}+y^{2}}-\frac {1}{x}\right ) y^{\prime } = 0 \]

3140

\[ {}x^{2} \left (1+y^{2}\right ) y^{\prime }+y^{2} \left (x^{2}+1\right ) = 0 \]

3141

\[ {}x \left (-1+x \right ) y^{\prime } = \cot \left (y\right ) \]

3142

\[ {}r y^{\prime } = \frac {\left (a^{2}-r^{2}\right ) \tan \left (y\right )}{a^{2}+r^{2}} \]

3143

\[ {}\sqrt {x^{2}+1}\, y^{\prime }+\sqrt {1+y^{2}} = 0 \]

3144

\[ {}y^{\prime } = \frac {x \left (1+y^{2}\right )}{y \left (x^{2}+1\right )} \]

3145

\[ {}y^{2} y^{\prime } = 2+3 y^{6} \]

3146

\[ {}\cos \left (y\right )^{2}+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]

3147

\[ {}y^{\prime } = \frac {x^{3} {\mathrm e}^{x^{2}}}{y \ln \left (y\right )} \]

3148

\[ {}x \cos \left (y\right )^{2}+{\mathrm e}^{x} \tan \left (y\right ) y^{\prime } = 0 \]

3149

\[ {}x \left (1+y^{2}\right )+\left (2 y+1\right ) {\mathrm e}^{-x} y^{\prime } = 0 \]

3150

\[ {}x y^{3}+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

3151

\[ {}x \cos \left (y\right )^{2}+\tan \left (y\right ) y^{\prime } = 0 \]

3152

\[ {}x y^{3}+\left (y+1\right ) {\mathrm e}^{-x} y^{\prime } = 0 \]

3153

\[ {}y^{\prime }+\frac {x}{y}+2 = 0 \]

3154

\[ {}-y+x y^{\prime } = x \cot \left (\frac {y}{x}\right ) \]

3155

\[ {}x \cos \left (\frac {y}{x}\right )^{2}-y+x y^{\prime } = 0 \]

3156

\[ {}x y^{\prime } = y \left (1+\ln \left (y\right )-\ln \left (x \right )\right ) \]

3157

\[ {}x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

3158

\[ {}\left (1-{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x} = 0 \]

3159

\[ {}x^{2}-x y+y^{2}-x y y^{\prime } = 0 \]

3160

\[ {}\left (3+2 x +4 y\right ) y^{\prime } = 1+x +2 y \]

3161

\[ {}y^{\prime } = \frac {2 x +y-1}{x -y-2} \]

3162

\[ {}y+2 = \left (-4+2 x +y\right ) y^{\prime } \]

3163

\[ {}y^{\prime } = \sin \left (x -y\right )^{2} \]

3164

\[ {}y^{\prime } = \left (1+x \right )^{2}+\left (4 y+1\right )^{2}+8 x y+1 \]

3165

\[ {}3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

3166

\[ {}2 x^{2}-x y^{2}-2 y+3-\left (x^{2} y+2 x \right ) y^{\prime } = 0 \]

3167

\[ {}x y^{2}+x -2 y+3+\left (x^{2} y-2 x -2 y\right ) y^{\prime } = 0 \]

3168

\[ {}3 y \left (x^{2}-1\right )+\left (x^{3}+8 y-3 x \right ) y^{\prime } = 0 \]

3169

\[ {}x^{2}+\ln \left (y\right )+\frac {x y^{\prime }}{y} = 0 \]

3170

\[ {}2 x \left (3 x +y-y \,{\mathrm e}^{-x^{2}}\right )+\left (x^{2}+3 y^{2}+{\mathrm e}^{-x^{2}}\right ) y^{\prime } = 0 \]

3171

\[ {}3+y+2 y^{2} \sin \left (x \right )^{2}+\left (x +2 x y-y \sin \left (2 x \right )\right ) y^{\prime } = 0 \]

3172

\[ {}2 x y+\left (x^{2}+2 x y+y^{2}\right ) y^{\prime } = 0 \]

3173

\[ {}x^{2}-\sin \left (y\right )^{2}+x \sin \left (2 y\right ) y^{\prime } = 0 \]

3174

\[ {}y \left (2 x -y+2\right )+2 \left (x -y\right ) y^{\prime } = 0 \]

3175

\[ {}4 x y+3 y^{2}-x +x \left (2 y+x \right ) y^{\prime } = 0 \]

3176

\[ {}y+x \left (y^{2}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

3177

\[ {}x^{2}+2 x +y+\left (3 x^{2} y-x \right ) y^{\prime } = 0 \]

3178

\[ {}y^{2}+\left (x y+y^{2}-1\right ) y^{\prime } = 0 \]

3179

\[ {}3 x^{2}+3 y^{2}+x \left (x^{2}+3 y^{2}+6 y\right ) y^{\prime } = 0 \]

3180

\[ {}2 y \left (x +y+2\right )+\left (y^{2}-x^{2}-4 x -1\right ) y^{\prime } = 0 \]

3181

\[ {}2+y^{2}+2 x +2 y y^{\prime } = 0 \]

3182

\[ {}2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \]

3183

\[ {}y \left (x +y\right )+\left (x +2 y-1\right ) y^{\prime } = 0 \]

3184

\[ {}2 x \left (x^{2}-\sin \left (y\right )+1\right )+\left (x^{2}+1\right ) \cos \left (y\right ) y^{\prime } = 0 \]

3185

\[ {}x^{2}+y+y^{2}-x y^{\prime } = 0 \]

3186

\[ {}x -\sqrt {x^{2}+y^{2}}+\left (y-\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0 \]

3187

\[ {}y \sqrt {1+y^{2}}+\left (x \sqrt {1+y^{2}}-y\right ) y^{\prime } = 0 \]

3188

\[ {}y^{2}-\left (x y+x^{3}\right ) y^{\prime } = 0 \]

3189

\[ {}y-2 x^{3} \tan \left (\frac {y}{x}\right )-x y^{\prime } = 0 \]

3190

\[ {}2 y^{2} x^{2}+y+\left (x^{3} y-x \right ) y^{\prime } = 0 \]

3191

\[ {}y^{2}+\left (x y+\tan \left (x y\right )\right ) y^{\prime } = 0 \]

3192

\[ {}2 y^{4} x -y+\left (4 y^{3} x^{3}-x \right ) y^{\prime } = 0 \]

3193

\[ {}x^{2}+y^{3}+y+\left (x^{3}+y^{2}-x \right ) y^{\prime } = 0 \]

3194

\[ {}y \left (1+y^{2}\right )+x \left (y^{2}-x +1\right ) y^{\prime } = 0 \]

3195

\[ {}y^{2}+\left ({\mathrm e}^{x}-y\right ) y^{\prime } = 0 \]

3196

\[ {}y^{2} x^{2}-2 y+\left (x^{3} y-x \right ) y^{\prime } = 0 \]

3197

\[ {}2 x^{3} y+y^{3}-\left (x^{4}+2 x y^{2}\right ) y^{\prime } = 0 \]

3198

\[ {}1+\cos \left (x \right ) y-y^{\prime } \sin \left (x \right ) = 0 \]

3199

\[ {}\left (\sin \left (y\right )^{2}+x \cot \left (y\right )\right ) y^{\prime } = 0 \]

3200

\[ {}1-\left (y-2 x y\right ) y^{\prime } = 0 \]

3201

\[ {}1-\left (1+2 x \tan \left (y\right )\right ) y^{\prime } = 0 \]

3202

\[ {}\left (y^{3}+\frac {x}{y}\right ) y^{\prime } = 1 \]

3203

\[ {}1+\left (x -y^{2}\right ) y^{\prime } = 0 \]

3204

\[ {}y^{2}+\left (x y+y^{2}-1\right ) y^{\prime } = 0 \]

3205

\[ {}y = \left ({\mathrm e}^{y}+2 x y-2 x \right ) y^{\prime } \]

3206

\[ {}\left (2 x +3\right ) y^{\prime } = y+\sqrt {2 x +3} \]

3207

\[ {}y+\left (y^{2} {\mathrm e}^{y}-x \right ) y^{\prime } = 0 \]

3208

\[ {}y^{\prime } = 1+3 y \tan \left (x \right ) \]

3209

\[ {}\left (\cos \left (x \right )+1\right ) y^{\prime } = \sin \left (x \right ) \left (\sin \left (x \right )+\cos \left (x \right ) \sin \left (x \right )-y\right ) \]

3210

\[ {}y^{\prime } = \left (\sin \left (x \right )^{2}-y\right ) \cos \left (x \right ) \]

3211

\[ {}\left (1+x \right ) y^{\prime }-y = x \left (1+x \right )^{2} \]