# |
ODE |
Mathematica |
Maple |
\[ {}{\mathrm e}^{t} \left (-t +y\right )+\left (1+{\mathrm e}^{t}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {t y^{\prime }}{y}+1+\ln \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\cos \left (\theta \right ) r^{\prime }-r \sin \left (\theta \right )+{\mathrm e}^{\theta } = 0 \] |
✓ |
✓ |
|
\[ {}y \,{\mathrm e}^{x y}-\frac {1}{y}+\left (x \,{\mathrm e}^{x y}+\frac {x}{y^{2}}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {1}{y}-\left (3 y-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x +y^{2}-\cos \left (x +y\right )-\left (2 x y-\cos \left (x +y\right )-{\mathrm e}^{y}\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \frac {{\mathrm e}^{x +y}}{y-1} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-4 y = 32 x^{2} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-\frac {2}{y^{3}}\right ) y^{\prime }+2 x y-3 x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {3 y}{x} = x^{2}-4 x +3 \] |
✓ |
✓ |
|
\[ {}2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+2 x y-x +1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \left (1+x \right )^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+2 x y = \sinh \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{1-x}+2 x -x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{1-x}+x -x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime } = x y+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x y = x y^{2} \] |
✓ |
✓ |
|
\[ {}3 x y^{\prime }+y+x^{2} y^{4} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {2 y}{x}-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 y}{x}-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x^{2}+2 x -3 \] |
✓ |
✓ |
|
\[ {}\left (1+x \right )^{2} y^{\prime } = 1+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = {\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = x^{3} \sin \left (3 x \right )+4 \] |
✓ |
✓ |
|
\[ {}x \cos \left (y\right ) y^{\prime }-\sin \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+x y^{2}\right ) y^{\prime } = 2 y^{3} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \tanh \left (x \right ) = 2 \sinh \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-2 y = x^{3} \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = y^{3} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+3 y = y^{2} x^{2} \] |
✓ |
✓ |
|
\[ {}x \left (y-3\right ) y^{\prime } = 4 y \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+1\right ) y^{\prime } = x^{2} y \] |
✓ |
✓ |
|
\[ {}x^{3}+\left (y+1\right )^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (y+1\right )+y^{2} \left (-1+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (2 y-x \right ) y^{\prime } = y+2 x \] |
✓ |
✓ |
|
\[ {}x y+y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{3}+y^{3} = 3 y^{2} y^{\prime } x \] |
✓ |
✓ |
|
\[ {}y-3 x +\left (4 y+3 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+3 x y^{2}\right ) y^{\prime } = y^{3}+3 x^{2} y \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x^{3}+3 x^{2}-2 x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \tan \left (x \right ) = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x^{3} \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+3 x y = 5 x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cot \left (x \right ) = 5 \,{\mathrm e}^{\cos \left (x \right )} \] |
✓ |
✓ |
|
\[ {}\left (3 x +3 y-4\right ) y^{\prime } = -x -y \] |
✓ |
✓ |
|
\[ {}x -x y^{2} = \left (x +x^{2} y\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}x -y-1+\left (4 y+x -1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \left (x y+1\right )+x \left (y^{2} x^{2}+x y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = x y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = y^{4} {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}2 y^{\prime }+y = y^{3} \left (-1+x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y \tan \left (x \right ) = y^{2} \tan \left (x \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \tan \left (x \right ) = y^{3} \sec \left (x \right )^{4} \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y+1 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime }-\left (1+x \right ) \sqrt {y-1} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}-2 x y+5 y^{2} = \left (x^{2}+2 x y+y^{2}\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \cot \left (x \right ) = y^{2} \sec \left (x \right )^{2} \] |
✓ |
✓ |
|
\[ {}y+\left (x^{2}-4 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \tan \left (x \right ) = \cos \left (x \right )-2 x \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x y+y^{2}}{x^{2}+2 x y} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (y+1\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+2 y = 3 x -1 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y^{2}-x y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \] |
✓ |
✓ |
|
\[ {}2 x y y^{\prime } = x^{2}-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1+x -2 y}{2 x -4 y} \] |
✓ |
✓ |
|
\[ {}\left (-x^{3}+1\right ) y^{\prime }+x^{2} y = x^{2} \left (-x^{3}+1\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x +x y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\left (\frac {1}{x}-\frac {2 x}{-x^{2}+1}\right ) y = \frac {1}{-x^{2}+1} \] |
✓ |
✓ |
|
\[ {}x y+\left (x^{2}+1\right ) y^{\prime } = \left (x^{2}+1\right )^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}x \left (1+y^{2}\right )-\left (x^{2}+1\right ) y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {r \tan \left (\theta \right ) r^{\prime }}{a^{2}-r^{2}} = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = x y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-5 y = \left (-1+x \right ) \sin \left (x \right )+\left (1+x \right ) \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-5 y = 3 \,{\mathrm e}^{x}-2 x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-5 y = {\mathrm e}^{x} x^{2}-x \,{\mathrm e}^{5 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = {\mathrm e}^{2 x} x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = \sin \left (x \right )+\cos \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {4 y}{x} = x^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{x} = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 2 y \] |
✓ |
✓ |
|
\[ {}y y^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{3} y^{\prime } = y \left (3 x^{2}+y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}4 y+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1+2 y+\left (-x^{2}+4\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|