3.9.25 Problems 2401 to 2500

Table 3.555: First order ode linear in derivative

#

ODE

Mathematica

Maple

4990

et(t+y)+(1+et)y=0

4991

tyy+1+ln(y)=0

4992

cos(θ)rrsin(θ)+eθ=0

4993

yexy1y+(xexy+xy2)y=0

4994

1y(3yxy2)y=0

4995

2x+y2cos(x+y)(2xycos(x+y)ey)y=0

4996

y=ex+yy1

4997

y4y=32x2

4998

(x22y3)y+2xy3x2=0

4999

y+3yx=x24x+3

5000

2xy3(x2+1)y=0

5001

t3y2+t4yy6=0

5055

yy=e2x

5056

x2y+2xyx+1=0

5057

y+y=(1+x)2

5058

x2y+2xy=sinh(x)

5059

y+y1x+2xx2=0

5060

y+y1x+xx2=0

5061

(x2+1)y=xy+1

5062

y+xy=xy2

5063

3xy+y+x2y4=0

5072

y2yxx2=0

5073

y+2yxx3=0

5075

xy=x2+2x3

5076

(1+x)2y=1+y2

5077

y+2y=e3x

5078

y+xy=x2

5079

x2y=x3sin(3x)+4

5080

xcos(y)ysin(y)=0

5081

(x3+xy2)y=2y3

5082

(x21)y+2xy=x

5083

y+ytanh(x)=2sinh(x)

5084

xy2y=x3cos(x)

5085

y+yx=y3

5086

xy+3y=y2x2

5087

x(y3)y=4y

5088

(x3+1)y=x2y

5089

x3+(y+1)2y=0

5090

cos(y)+(1+ex)sin(y)y=0

5091

x2(y+1)+y2(1+x)y=0

5092

(2yx)y=y+2x

5093

xy+y2+(x2xy)y=0

5094

x3+y3=3y2yx

5095

y3x+(4y+3x)y=0

5096

(x3+3xy2)y=y3+3x2y

5097

y+xy=x3+3x22x

5098

y+ytan(x)=sin(x)

5099

y+xy=x3cos(x)

5100

(x2+1)y+3xy=5x

5101

y+ycot(x)=5ecos(x)

5102

(3x+3y4)y=xy

5103

xxy2=(x+x2y)y

5104

xy1+(4y+x1)y=0

5105

3y7x+7+(7y3x+3)y=0

5106

y(xy+1)+x(y2x2+xy+1)y=0

5107

y+y=xy3

5108

y+y=y4ex

5109

2y+y=y3(1+x)

5110

y2ytan(x)=y2tan(x)2

5111

y+ytan(x)=y3sec(x)4

5112

(x2+1)y=xy+1

5113

xyy(1+x)y1=0

5114

x22xy+5y2=(x2+2xy+y2)y

5115

yycot(x)=y2sec(x)2

5116

y+(x24x)y=0

5117

yytan(x)=cos(x)2xsin(x)

5118

y=2xy+y2x2+2xy

5119

(x2+1)y=x(y+1)

5120

xy+2y=3x1

5121

x2y=y2xyy

5122

y=e3x2y

5123

y+yx=sin(2x)

5124

y2+x2y=xyy

5125

2xyy=x2y2

5126

y=1+x2y2x4y

5127

(x3+1)y+x2y=x2(x3+1)

5128

y+yx=sin(x)

5129

y+x+xy2=0

5130

y+(1x2xx2+1)y=1x2+1

5131

xy+(x2+1)y=(x2+1)32

5132

x(1+y2)(x2+1)yy=0

5133

rtan(θ)ra2r2=1

5134

y+ycot(x)=cos(x)

5135

y+yx=xy2

5172

y5y=(1+x)sin(x)+(1+x)cos(x)

5173

y5y=3ex2x+1

5174

y5y=exx2xe5x

5180

yy=ex

5181

yy=e2xx+1

5182

yy=sin(x)+cos(2x)

5190

y+4yx=x4

5199

yyx=x2

5200

y+2y=0

5201

y+2y=2

5202

y+2y=ex

5226

xy=2y

5227

yy+x=0

5229

2x3y=y(3x2+y2)

5236

4y+xy=0

5237

1+2y+(x2+4)y=0