3.9.35 Problems 3401 to 3500

Table 3.575: First order ode linear in derivative

#

ODE

Mathematica

Maple

8683

\[ {}y^{\prime } \left (\sin \left (x \right )+1\right ) \sin \left (y\right )+\cos \left (x \right ) \left (\cos \left (y\right )-1\right ) = 0 \]

8684

\[ {}\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime }+\cos \left (x \right ) y+\sin \left (y\right ) = 0 \]

8685

\[ {}x y^{\prime } \cot \left (\frac {y}{x}\right )+2 x \sin \left (\frac {y}{x}\right )-y \cot \left (\frac {y}{x}\right ) = 0 \]

8686

\[ {}y^{\prime } \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right )^{2}-\sin \left (y\right ) = 0 \]

8687

\[ {}y^{\prime } \cos \left (y\right )+x \sin \left (y\right ) \cos \left (y\right )^{2}-\sin \left (y\right )^{3} = 0 \]

8688

\[ {}y^{\prime } \left (\cos \left (y\right )-\sin \left (\alpha \right ) \sin \left (x \right )\right ) \cos \left (y\right )+\left (\cos \left (x \right )-\sin \left (\alpha \right ) \sin \left (y\right )\right ) \cos \left (x \right ) = 0 \]

8689

\[ {}x \cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = 0 \]

8690

\[ {}\left (x \sin \left (y\right )-1\right ) y^{\prime }+\cos \left (y\right ) = 0 \]

8691

\[ {}\left (x \cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }-y \sin \left (x \right )+\sin \left (y\right ) = 0 \]

8692

\[ {}\left (x^{2} \cos \left (y\right )+2 y \sin \left (x \right )\right ) y^{\prime }+2 x \sin \left (y\right )+y^{2} \cos \left (x \right ) = 0 \]

8693

\[ {}x y^{\prime } \ln \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) \left (1-x \cos \left (y\right )\right ) = 0 \]

8694

\[ {}y^{\prime } \sin \left (y\right ) \cos \left (x \right )+\cos \left (y\right ) \sin \left (x \right ) = 0 \]

8695

\[ {}3 \sin \left (x \right ) \sin \left (y\right ) y^{\prime }+5 \cos \left (x \right )^{4} y = 0 \]

8696

\[ {}y^{\prime } \cos \left (a y\right )-b \left (1-c \cos \left (a y\right )\right ) \sqrt {\cos \left (a y\right )^{2}-1+c \cos \left (a y\right )} = 0 \]

8697

\[ {}\left (x \sin \left (x y\right )+\cos \left (x +y\right )-\sin \left (y\right )\right ) y^{\prime }+y \sin \left (x y\right )+\cos \left (x +y\right )+\cos \left (x \right ) = 0 \]

8698

\[ {}\left (x^{2} y \sin \left (x y\right )-4 x \right ) y^{\prime }+x y^{2} \sin \left (x y\right )-y = 0 \]

8699

\[ {}\left (-y+x y^{\prime }\right ) \cos \left (\frac {y}{x}\right )^{2}+x = 0 \]

8700

\[ {}\left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }-\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y = 0 \]

8701

\[ {}\left (y f \left (x^{2}+y^{2}\right )-x \right ) y^{\prime }+y+x f \left (x^{2}+y^{2}\right ) = 0 \]

8702

\[ {}f \left (x^{2}+a y^{2}\right ) \left (a y y^{\prime }+x \right )-y-x y^{\prime } = 0 \]

8703

\[ {}f \left (x^{c} y\right ) \left (b x y^{\prime }-a \right )-x^{a} y^{b} \left (x y^{\prime }+c y\right ) = 0 \]

8770

\[ {}y^{\prime }-1 = 0 \]

8912

\[ {}y^{\prime } = F \left (\frac {y}{x +a}\right ) \]

8913

\[ {}y^{\prime } = 2 x +F \left (y-x^{2}\right ) \]

8914

\[ {}y^{\prime } = -\frac {a x}{2}+F \left (y+\frac {x^{2} a}{4}+\frac {b x}{2}\right ) \]

8915

\[ {}y^{\prime } = F \left (y \,{\mathrm e}^{-b x}\right ) {\mathrm e}^{b x} \]

8916

\[ {}y^{\prime } = \frac {1+2 F \left (\frac {4 x^{2} y+1}{4 x^{2}}\right ) x}{2 x^{3}} \]

8917

\[ {}y^{\prime } = \frac {1+F \left (\frac {a x y+1}{a x}\right ) a \,x^{2}}{a \,x^{2}} \]

8918

\[ {}y^{\prime } = -\frac {\left (x^{2} a -2 F \left (y+\frac {a \,x^{4}}{8}\right )\right ) x}{2} \]

8919

\[ {}y^{\prime } = \frac {2 a}{y+2 F \left (y^{2}-4 a x \right ) a} \]

8920

\[ {}y^{\prime } = F \left (\ln \left (\ln \left (y\right )\right )-\ln \left (x \right )\right ) y \]

8921

\[ {}y^{\prime } = \frac {F \left (\frac {y}{\sqrt {x^{2}+1}}\right ) x}{\sqrt {x^{2}+1}} \]

8922

\[ {}y^{\prime } = \frac {\left (x^{\frac {3}{2}}+2 F \left (y-\frac {x^{3}}{6}\right )\right ) \sqrt {x}}{2} \]

8923

\[ {}y^{\prime } = \frac {x +F \left (-\left (x -y\right ) \left (x +y\right )\right )}{y} \]

8924

\[ {}y^{\prime } = \frac {F \left (-\frac {-1+y \ln \left (x \right )}{y}\right ) y^{2}}{x} \]

8925

\[ {}y^{\prime } = \frac {x}{-y+F \left (x^{2}+y^{2}\right )} \]

8926

\[ {}y^{\prime } = \frac {F \left (\frac {a y^{2}+b \,x^{2}}{a}\right ) x}{\sqrt {a}\, y} \]

8927

\[ {}y^{\prime } = \frac {6 x^{3}+5 \sqrt {x}+5 F \left (y-\frac {2 x^{3}}{5}-2 \sqrt {x}\right )}{5 x} \]

8928

\[ {}y^{\prime } = \frac {F \left (y^{\frac {3}{2}}-\frac {3 \,{\mathrm e}^{x}}{2}\right ) {\mathrm e}^{x}}{\sqrt {y}} \]

8929

\[ {}y^{\prime } = \frac {F \left (-\frac {-y^{2}+b}{x^{2}}\right ) x}{y} \]

8930

\[ {}y^{\prime } = \frac {F \left (\frac {x y^{2}+1}{x}\right )}{y x^{2}} \]

8931

\[ {}y^{\prime } = \frac {-2 x^{2}+x +F \left (y+x^{2}-x \right )}{x} \]

8932

\[ {}y^{\prime } = \frac {2 a}{x^{2} \left (-y+2 F \left (\frac {x y^{2}-4 a}{x}\right ) a \right )} \]

8933

\[ {}y^{\prime } = \frac {y+F \left (\frac {y}{x}\right )}{-1+x} \]

8934

\[ {}y^{\prime } = \frac {-x +F \left (x^{2}+y^{2}\right )}{y} \]

8935

\[ {}y^{\prime } = \frac {F \left (-\frac {-1+2 y \ln \left (x \right )}{y}\right ) y^{2}}{x} \]

8936

\[ {}y^{\prime } = \frac {F \left (-\left (x -y\right ) \left (x +y\right )\right ) x}{y} \]

8937

\[ {}y^{\prime } = \frac {y^{2} \left (2+F \left (\frac {x^{2}-y}{y x^{2}}\right ) x^{2}\right )}{x^{3}} \]

8938

\[ {}y^{\prime } = \frac {2 F \left (y+\ln \left (2 x +1\right )\right ) x +F \left (y+\ln \left (2 x +1\right )\right )-2}{2 x +1} \]

8939

\[ {}y^{\prime } = \frac {2 y^{3}}{1+2 F \left (\frac {1+4 x y^{2}}{y^{2}}\right ) y} \]

8940

\[ {}y^{\prime } = -\frac {y^{2} \left (2 x -F \left (-\frac {x y-2}{2 y}\right )\right )}{4 x} \]

8941

\[ {}y^{\prime } = -\left (-{\mathrm e}^{-x^{2}}+x^{2} {\mathrm e}^{-x^{2}}-F \left (y-\frac {x^{2} {\mathrm e}^{-x^{2}}}{2}\right )\right ) x \]

8942

\[ {}y^{\prime } = \frac {2 y+F \left (\frac {y}{x^{2}}\right ) x^{3}}{x} \]

8943

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {y}+F \left (\frac {x -y}{\sqrt {y}}\right )} \]

8944

\[ {}y^{\prime } = \frac {-3 x^{2} y+F \left (x^{3} y\right )}{x^{3}} \]

8945

\[ {}y^{\prime } = \frac {y+F \left (\frac {y}{x}\right ) x^{2}}{x} \]

8946

\[ {}y^{\prime } = \frac {-2 x -y+F \left (x \left (x +y\right )\right )}{x} \]

8947

\[ {}y^{\prime } = \frac {\left (y \,{\mathrm e}^{-\frac {x^{2}}{4}} x +2 F \left (y \,{\mathrm e}^{-\frac {x^{2}}{4}}\right )\right ) {\mathrm e}^{\frac {x^{2}}{4}}}{2} \]

8948

\[ {}y^{\prime } = \frac {x +y+F \left (-\frac {-y+x \ln \left (x \right )}{x}\right ) x^{2}}{x} \]

8949

\[ {}y^{\prime } = \frac {x \left (a -1\right ) \left (1+a \right )}{y+F \left (\frac {y^{2}}{2}-\frac {x^{2} a^{2}}{2}+\frac {x^{2}}{2}\right ) a^{2}-F \left (\frac {y^{2}}{2}-\frac {x^{2} a^{2}}{2}+\frac {x^{2}}{2}\right )} \]

8950

\[ {}y^{\prime } = \frac {y}{x \left (-1+F \left (x y\right ) y\right )} \]

8951

\[ {}y^{\prime } = -\frac {-x^{2}+2 x^{3} y-F \left (\left (x y-1\right ) x \right )}{x^{4}} \]

8952

\[ {}y^{\prime } = \frac {F \left (\frac {\left (3+y\right ) {\mathrm e}^{\frac {3 x^{2}}{2}}}{3 y}\right ) x y^{2} {\mathrm e}^{3 x^{2}} {\mathrm e}^{-\frac {9 x^{2}}{2}}}{9} \]

8953

\[ {}y^{\prime } = \frac {\left (y+1\right ) \left (\left (y-\ln \left (y+1\right )-\ln \left (x \right )\right ) x +1\right )}{y x} \]

8954

\[ {}y^{\prime } = \frac {6 y}{8 y^{4}+9 y^{3}+12 y^{2}+6 y-F \left (-\frac {y^{4}}{3}-\frac {y^{3}}{2}-y^{2}-y+x \right )} \]

8955

\[ {}y^{\prime } = \frac {y^{2}+2 x y+x^{2}+{\mathrm e}^{2 F \left (-\left (x -y\right ) \left (x +y\right )\right )}}{y^{2}+2 x y+x^{2}-{\mathrm e}^{2 F \left (-\left (x -y\right ) \left (x +y\right )\right )}} \]

8956

\[ {}y^{\prime } = \frac {1}{y+\sqrt {x}} \]

8957

\[ {}y^{\prime } = \frac {1}{y+2+\sqrt {3 x +1}} \]

8958

\[ {}y^{\prime } = \frac {x^{2}}{y+x^{\frac {3}{2}}} \]

8959

\[ {}y^{\prime } = \frac {x^{\frac {5}{3}}}{y+x^{\frac {4}{3}}} \]

8960

\[ {}y^{\prime } = \frac {i x^{2} \left (i-2 \sqrt {-x^{3}+6 y}\right )}{2} \]

8961

\[ {}y^{\prime } = \frac {x}{y+\sqrt {x^{2}+1}} \]

8962

\[ {}y^{\prime } = \frac {\left (-1+y \ln \left (x \right )\right )^{2}}{x} \]

8963

\[ {}y^{\prime } = \frac {x \left (-2+3 \sqrt {x^{2}+3 y}\right )}{3} \]

8964

\[ {}y^{\prime } = \frac {\left (-1+2 y \ln \left (x \right )\right )^{2}}{x} \]

8965

\[ {}y^{\prime } = \frac {{\mathrm e}^{b x}}{y \,{\mathrm e}^{-b x}+1} \]

8966

\[ {}y^{\prime } = \frac {x^{2} \left (1+2 \sqrt {x^{3}-6 y}\right )}{2} \]

8967

\[ {}y^{\prime } = \frac {{\mathrm e}^{x}}{y \,{\mathrm e}^{-x}+1} \]

8968

\[ {}y^{\prime } = \frac {{\mathrm e}^{\frac {2 x}{3}}}{y \,{\mathrm e}^{-\frac {2 x}{3}}+1} \]

8969

\[ {}y^{\prime } = \frac {1+2 x^{5} \sqrt {4 x^{2} y+1}}{2 x^{3}} \]

8970

\[ {}y^{\prime } = \frac {x \left (x +2 \sqrt {x^{3}-6 y}\right )}{2} \]

8971

\[ {}y^{\prime } = \left (-\ln \left (y\right )+x^{2}\right ) y \]

8972

\[ {}y^{\prime } = \frac {{\mathrm e}^{-x^{2}} x}{y \,{\mathrm e}^{x^{2}}+1} \]

8973

\[ {}y^{\prime } = -\left (-\ln \left (\ln \left (y\right )\right )+\ln \left (x \right )\right ) y \]

8974

\[ {}y^{\prime } = \left (-\ln \left (\ln \left (y\right )\right )+\ln \left (x \right )\right )^{2} y \]

8975

\[ {}y^{\prime } = \frac {y}{\ln \left (\ln \left (y\right )\right )-\ln \left (x \right )+1} \]

8976

\[ {}y^{\prime } = \frac {1+2 \sqrt {4 x^{2} y+1}\, x^{4}}{2 x^{3}} \]

8977

\[ {}y^{\prime } = \frac {\left (-y^{2}+4 a x \right )^{2}}{y} \]

8978

\[ {}y^{\prime } = \frac {x \left (-2+3 x \sqrt {x^{2}+3 y}\right )}{3} \]

8979

\[ {}y^{\prime } = -\frac {x^{2} \left (a x -2 \sqrt {a \left (a \,x^{4}+8 y\right )}\right )}{2} \]

8980

\[ {}y^{\prime } = \left (-\ln \left (y\right )+x \right ) y \]

8981

\[ {}y^{\prime } = \frac {x^{3}+x^{2}+2 \sqrt {x^{3}-6 y}}{2 x +2} \]

8982

\[ {}y^{\prime } = \frac {\left (a y^{2}+b \,x^{2}\right )^{2} x}{a^{\frac {5}{2}} y} \]

8983

\[ {}y^{\prime } = -\frac {x^{3} \left (x \sqrt {a}+\sqrt {a}-2 \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2 \left (1+x \right )} \]

8984

\[ {}y^{\prime } = -\frac {x}{4}+\frac {1}{4}+x \sqrt {x^{2}-2 x +1+8 y} \]

8985

\[ {}y^{\prime } = -\frac {x}{2}-\frac {a}{2}+x \sqrt {x^{2}+2 a x +a^{2}+4 y} \]

8986

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x^{2}\right ) y}{x} \]

8987

\[ {}y^{\prime } = \frac {2 a +x \sqrt {-y^{2}+4 a x}}{y} \]

8988

\[ {}y^{\prime } = -\frac {x}{2}+1+x \sqrt {x^{2}-4 x +4 y} \]

8989

\[ {}y^{\prime } = -\frac {2 x^{2}+2 x -3 \sqrt {x^{2}+3 y}}{3 \left (1+x \right )} \]