# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{\ln \left (x y\right )} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \left (x^{2}+y^{2}\right ) y^{\frac {1}{3}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = 2 x y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \ln \left (1+x^{2}+y^{2}\right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \frac {2 x +3 y}{x -4 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {x^{2}+y^{2}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = x \left (y^{2}-1\right )^{\frac {2}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x^{2}+y^{2}\right )^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \sqrt {x +y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\tan \left (y\right )}{-1+x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{\frac {2}{5}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x \left (y-1\right )^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x \left (y-1\right )^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x \left (y-1\right )^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = x y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {y}{x}}}{x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y^{2}+x y-x^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y^{2}+x y-x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = y^{2} \] |
✓ |
✓ |
|
\[ {}7 x y^{\prime }-2 y = -\frac {x^{2}}{y^{6}} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+2 y = 2 \,{\mathrm e}^{\frac {1}{x}} \sqrt {y} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = \frac {1}{\left (x^{2}+1\right ) y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y = y^{3} x^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {\left (1+x \right ) y}{3 x} = y^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = x y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y = x y^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x^{4} y^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = 2 \sqrt {y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-4 y = \frac {48 x}{y^{2}} \] |
✓ |
✓ |
|
\[ {}2 x y+x^{2} y^{\prime } = y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = x \sqrt {y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{3} y^{\prime } x = y^{4}+x^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x}+\sec \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = x^{2}+x y+y^{2} \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = x^{2}+2 y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y^{2}+x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}}{2 x y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x y+y^{2}}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{3}+y^{3}}{x y^{2}} \] |
✓ |
✓ |
|
\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}-3 x y-5 x^{2}}{x^{2}} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = 2 x^{2}+y^{2}+4 x y \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = 3 x^{2}+4 y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y}{x -y} \] |
✓ |
✓ |
|
\[ {}\left (-y+x y^{\prime }\right ) \left (\ln \left (y\right )-\ln \left (x \right )\right ) = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{3}+2 x y^{2}+x^{2} y+x^{3}}{x \left (x +y\right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y+x}{y+2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{-2 x +y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x y^{2}+2 y^{3}}{x^{3}+x^{2} y+x y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{3}+x^{2} y+3 y^{3}}{x^{3}+3 x y^{2}} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y^{2}+x y-4 x^{2} \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = x^{2}-x y+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y^{2}-x y+2 x^{2}}{x y+2 x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}+x y+y^{2}}{x y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-6 x +y-3}{2 x -y-1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x +y+1}{x +2 y-4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-x +3 y-14}{x +y-2} \] |
✓ |
✓ |
|
\[ {}3 y^{2} y^{\prime } x = y^{3}+x \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = 3 x^{6}+6 y^{2} \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime } = 2 y^{2}+2 x^{2} y-2 x^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} {\mathrm e}^{-x}+4 y+2 \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}+y \tan \left (x \right )+\tan \left (x \right )^{2}}{\sin \left (x \right )^{2}} \] |
✓ |
✓ |
|
\[ {}x \ln \left (x \right )^{2} y^{\prime } = -4 \ln \left (x \right )^{2}+y \ln \left (x \right )+y^{2} \] |
✓ |
✓ |
|
\[ {}2 x \left (y+2 \sqrt {x}\right ) y^{\prime } = \left (y+\sqrt {x}\right )^{2} \] |
✓ |
✓ |
|
\[ {}\left (y+{\mathrm e}^{x^{2}}\right ) y^{\prime } = 2 x \left (y^{2}+y \,{\mathrm e}^{x^{2}}+{\mathrm e}^{2 x^{2}}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 y}{x} = \frac {3 y^{2} x^{2}+6 x y+2}{x^{2} \left (2 x y+3\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {3 y}{x} = \frac {3 x^{4} y^{2}+10 x^{2} y+6}{x^{3} \left (2 x^{2} y+5\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+x -\left (2 x +1\right ) y+x y^{2} \] |
✓ |
✓ |
|
\[ {}6 y^{2} x^{2}+4 y^{\prime } y x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}3 \cos \left (x \right ) y+4 x \,{\mathrm e}^{x}+2 x^{3} y+\left (3 \sin \left (x \right )+3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}14 x^{2} y^{3}+21 y^{2} y^{\prime } x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}2 x -2 y^{2}+\left (12 y^{2}-4 x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +y\right )^{2}+\left (x +y\right )^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}4 x +7 y+\left (3 x +4 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}-2 \sin \left (x \right ) y^{2}+3 y^{3}-2 x +\left (4 \cos \left (x \right ) y+9 x y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x +y+\left (2 y+2 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2}+2 x y+4 y^{2}+\left (x^{2}+8 x y+18 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2}+8 x y+y^{2}+\left (2 x^{2}+\frac {x y^{3}}{3}\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}\frac {1}{x}+2 x +\left (\frac {1}{y}+2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sin \left (x \right ) y^{2}+x y^{3} \cos \left (x \right )+\left (x \sin \left (x \right ) y+x y^{3} \cos \left (x \right )\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{\frac {3}{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{\frac {3}{2}}} = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x} \left (y^{2} x^{2}+2 x y^{2}\right )+6 x +\left (2 x^{2} y \,{\mathrm e}^{x}+2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {\mathrm e}^{x^{2}+y} \left (2 x^{2}+3\right )+4 x +\left (x^{3} {\mathrm e}^{x^{2}+y}-12 y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x y} \left (x^{4} y+4 x^{3}\right )+3 y+\left (x^{5} {\mathrm e}^{x y}+3 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2} \cos \left (x \right ) y-x^{3} y^{2} \sin \left (x \right )+4 x +\left (8 y-x^{4} \sin \left (x \right ) y\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}4 x^{3} y^{2}-6 x^{2} y-2 x -3+\left (2 x^{4} y-2 x^{3}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}-4 \cos \left (x \right ) y+4 \cos \left (x \right ) \sin \left (x \right )+\sec \left (x \right )^{2}+\left (4 y-4 \sin \left (x \right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{3}-1\right ) {\mathrm e}^{x}+3 y^{2} \left (1+{\mathrm e}^{x}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sin \left (x \right )-y \sin \left (x \right )-2 \cos \left (x \right )+\cos \left (x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (2 x -1\right ) \left (y-1\right )+\left (2+x \right ) \left (x -3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}7 x +4 y+\left (4 x +3 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x} \left (x^{4} y^{2}+4 x^{3} y^{2}+1\right )+\left (2 x^{4} y \,{\mathrm e}^{x}+2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{4}+x +\left (x^{4} y^{3}+y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2}+2 y+\left (2 y+2 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{4}+2 x +\left (x^{4} y^{3}+3 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 y}{x} = -\frac {2 x y}{x^{2}+2 x^{2} y+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {3 y}{x} = \frac {2 x^{4} \left (4 x^{3}-3 y\right )}{3 x^{5}+3 x^{3}+2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y = -\frac {{\mathrm e}^{-x^{2}} \left (3 x +2 y \,{\mathrm e}^{x^{2}}\right )}{2 x +3 y \,{\mathrm e}^{x^{2}}} \] |
✓ |
✓ |
|