# |
ODE |
Mathematica |
Maple |
\[ {}[y_{1}^{\prime }\left (t \right ) = 2 y_{1} \left (t \right )+y_{2} \left (t \right )-y_{3} \left (t \right ), y_{2}^{\prime }\left (t \right ) = y_{2} \left (t \right )+y_{3} \left (t \right ), y_{3}^{\prime }\left (t \right ) = y_{1} \left (t \right )+y_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\left (t \right ) = -3 y_{1} \left (t \right )+y_{2} \left (t \right )-3 y_{3} \left (t \right ), y_{2}^{\prime }\left (t \right ) = 4 y_{1} \left (t \right )-y_{2} \left (t \right )+2 y_{3} \left (t \right ), y_{3}^{\prime }\left (t \right ) = 4 y_{1} \left (t \right )-2 y_{2} \left (t \right )+3 y_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 6 x_{1} \left (t \right )-3 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -4 x_{1} \left (t \right )+3 x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+2 x_{2} \left (t \right )+4 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+2 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )+2 x_{2} \left (t \right )+3 x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 7 x_{1} \left (t \right )-x_{2} \left (t \right )+6 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -10 x_{1} \left (t \right )+4 x_{2} \left (t \right )-12 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = -7 x_{1} \left (t \right )+6 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 5 x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 6 x_{1} \left (t \right )+2 x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+2 x_{2} \left (t \right )+3 x_{3} \left (t \right )+6 x_{4} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+6 x_{2} \left (t \right )+9 x_{3} \left (t \right )+18 x_{4} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )+10 x_{2} \left (t \right )+15 x_{3} \left (t \right )+30 x_{4} \left (t \right ), x_{4}^{\prime }\left (t \right ) = 7 x_{1} \left (t \right )+14 x_{2} \left (t \right )+21 x_{3} \left (t \right )+42 x_{4} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )+x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-3 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+2 x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+3 x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+3 x_{2} \left (t \right )-x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+2 x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{1} \left (t \right )+10 x_{2} \left (t \right )+2 x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-3 x_{2} \left (t \right )+2 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -x_{2} \left (t \right )-2 x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+x_{2} \left (t \right )-2 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+2 x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )+x_{2} \left (t \right )-3 x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-5 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-3 x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+x_{2} \left (t \right )-2 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+2 x_{2} \left (t \right )+x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )-x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )-3 x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+2 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )-x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -3 x_{4} \left (t \right ), x_{4}^{\prime }\left (t \right ) = 3 x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 2 x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )+3 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 2 x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = -x_{2} \left (t \right )+x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-3 x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )-x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+2 x_{2} \left (t \right )+4 x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -2 x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 2 x_{3} \left (t \right ), x_{4}^{\prime }\left (t \right ) = -x_{3} \left (t \right )+2 x_{4} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+x_{2} \left (t \right )+2 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+x_{2} \left (t \right )+3 x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = -4 x_{1} \left (t \right )-4 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 10 x_{1} \left (t \right )+9 x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -4 x_{1} \left (t \right )-3 x_{2} \left (t \right )+x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+2 x_{2} \left (t \right )-3 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+2 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )+4 x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+3 x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 3 x_{3} \left (t \right ), x_{4}^{\prime }\left (t \right ) = 2 x_{3} \left (t \right )+3 x_{4} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )-2 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+2 x_{2} \left (t \right )+x_{3} \left (t \right )+{\mathrm e}^{t} \cos \left (2 t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+{\mathrm e}^{c t}, x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )-2 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+2 x_{2} \left (t \right )+x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )+5 x_{2} \left (t \right )+4 \,{\mathrm e}^{t} \cos \left (t \right ), x_{2}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )-2 x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-4 x_{2} \left (t \right )+{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )+{\mathrm e}^{t}] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-5 x_{2} \left (t \right )+\sin \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )+\tan \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{2} \left (t \right )+f_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+f_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{3} \left (t \right )+{\mathrm e}^{2 t}, x_{2}^{\prime }\left (t \right ) = 2 x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{2} \left (t \right )+3 x_{3} \left (t \right )+{\mathrm e}^{2 t}] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-x_{2} \left (t \right )-2 x_{3} \left (t \right )+{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )+3 x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )+{\mathrm e}^{3 t}, x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-2 x_{2} \left (t \right )+{\mathrm e}^{3 t}] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )-t^{2}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+3 x_{2} \left (t \right )+2 t] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+3 x_{2} \left (t \right )+2 x_{3} \left (t \right )+\sin \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+2 x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-x_{2} \left (t \right )-x_{3} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+2 x_{2} \left (t \right )-3 x_{3} \left (t \right )+{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+2 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )+4 x_{3} \left (t \right )-{\mathrm e}^{t}] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-x_{2} \left (t \right )+1, x_{2}^{\prime }\left (t \right ) = -4 x_{2} \left (t \right )-x_{3} \left (t \right )+t, x_{3}^{\prime }\left (t \right ) = 5 x_{2} \left (t \right )+{\mathrm e}^{t}] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right )+{\mathrm e}^{2 t}, x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+3 x_{2} \left (t \right )-4 x_{3} \left (t \right )+2 \,{\mathrm e}^{2 t}, x_{3}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )+x_{2} \left (t \right )-4 x_{3} \left (t \right )+{\mathrm e}^{2 t}] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )-x_{3} \left (t \right )+{\mathrm e}^{3 t}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+3 x_{2} \left (t \right )+x_{3} \left (t \right )-{\mathrm e}^{3 t}, x_{3}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right )-{\mathrm e}^{3 t}] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+2 x_{2} \left (t \right )+4 x_{3} \left (t \right )+2 \,{\mathrm e}^{8 t}, x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+2 x_{3} \left (t \right )+{\mathrm e}^{8 t}, x_{3}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )+2 x_{2} \left (t \right )+3 x_{3} \left (t \right )+2 \,{\mathrm e}^{8 t}] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right )-x \left (t \right ) = \cos \left (t \right ), y^{\prime }\left (t \right )+y \left (t \right ) = 4 t] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right )+5 x \left (t \right ) = 3 t^{2}, y^{\prime }\left (t \right )+y \left (t \right ) = {\mathrm e}^{3 t}] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right )+2 x \left (t \right ) = 3 t, x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right )+y \left (t \right ) = \cos \left (2 t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right )-x \left (t \right )+y \left (t \right ) = 2 \sin \left (t \right ), x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 3 y \left (t \right )-3 x \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[2 x^{\prime }\left (t \right )+3 x \left (t \right )-y \left (t \right ) = {\mathrm e}^{t}, 5 x \left (t \right )-3 y^{\prime }\left (t \right ) = y \left (t \right )+2 t] \] |
✓ |
✓ |
|
\[ {}[5 y^{\prime }\left (t \right )-3 x^{\prime }\left (t \right )-5 y \left (t \right ) = 5 t, 3 x^{\prime }\left (t \right )-5 y^{\prime }\left (t \right )-2 x \left (t \right ) = 0] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right ), z^{\prime }\left (t \right ) = 3 y \left (t \right )-2 z \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right )-y^{\prime }\left (t \right )+y \left (t \right ) = -{\mathrm e}^{t}, x \left (t \right )+y^{\prime }\left (t \right )-y \left (t \right ) = {\mathrm e}^{2 t}] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right )+2 x \left (t \right )+y^{\prime }\left (t \right )+y \left (t \right ) = t, 5 x \left (t \right )+y^{\prime }\left (t \right )+3 y \left (t \right ) = t^{2}] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right )+x \left (t \right )+2 y^{\prime }\left (t \right )+7 y \left (t \right ) = {\mathrm e}^{t}+2, -2 x \left (t \right )+y^{\prime }\left (t \right )+3 y \left (t \right ) = {\mathrm e}^{t}-1] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right )-x \left (t \right )+y^{\prime }\left (t \right )+3 y \left (t \right ) = {\mathrm e}^{-t}-1, x^{\prime }\left (t \right )+2 x \left (t \right )+y^{\prime }\left (t \right )+3 y \left (t \right ) = {\mathrm e}^{2 t}+1] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right )-x \left (t \right )+y^{\prime }\left (t \right )+2 y \left (t \right ) = 1+{\mathrm e}^{t}, y^{\prime }\left (t \right )+2 y \left (t \right )+z^{\prime }\left (t \right )+z \left (t \right ) = {\mathrm e}^{t}+2, x^{\prime }\left (t \right )-x \left (t \right )+z^{\prime }\left (t \right )+z \left (t \right ) = 3+{\mathrm e}^{t}] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-18 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-9 x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+3 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )+3 x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+3 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+5 x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )+2 x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+x_{2} \left (t \right )+2 \,{\mathrm e}^{-t}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )+3 t] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 16 x_{1} \left (t \right )-5 x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-4 x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-18 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-9 x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+3 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+5 x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-18 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-9 x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-2 x_{2} \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )-8, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+3] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )-8, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+3] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\left (x \right ) = y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = 6 y_{1} \left (x \right )+y_{2} \left (x \right )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right )+{\mathrm e}^{3 x}] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+x y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{2} \left (x \right )+x^{3} y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 x y_{2} \left (x \right )-y_{2} \left (x \right )+{\mathrm e}^{x} y_{3} \left (x \right )] \] |
✗ |
✗ |
|
\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+t -1, y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )-5 t -2] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+2 y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )-6 y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right ), y^{\prime }\left (t \right ) = 3 y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = 7 x \left (t \right )+6 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+6 y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+5 y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-5 t +2, y^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right )-8 t -8] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-7 y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}\left [x^{\prime }\left (t \right ) = -3 x \left (t \right )+\sqrt {2}\, y \left (t \right ), y^{\prime }\left (t \right ) = \sqrt {2}\, x \left (t \right )-2 y \left (t \right )\right ] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -6 x \left (t \right )-4 y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right )] \] |
✓ |
✓ |
|