# |
ODE |
Mathematica |
Maple |
\[ {}\left (3 x +5\right ) {y^{\prime }}^{2}-\left (3+3 y\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}4 x {y^{\prime }}^{2} = \left (a -3 x \right )^{2} \] |
✓ |
✓ |
|
\[ {}4 x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \] |
✓ |
✓ |
|
\[ {}4 x {y^{\prime }}^{2}+4 y y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}4 x {y^{\prime }}^{2}+4 y y^{\prime }-y^{4} = 0 \] |
✓ |
✓ |
|
\[ {}4 \left (2-x \right ) {y^{\prime }}^{2}+1 = 0 \] |
✓ |
✓ |
|
\[ {}16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2} = a^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2} = y^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}+x^{2}-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}+y^{2}-y^{4} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-x y^{\prime }+y \left (1-y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}+2 a x y^{\prime }+a^{2}+x^{2}-2 a y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x +y \left (y+1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{4}+\left (-x^{2}+1\right ) y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+1+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-\left (a +2 x y\right ) y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-x \left (x -2 y\right ) y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}+2 x \left (y+2 x \right ) y^{\prime }-4 a +y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}+x \left (x^{3}-2 y\right ) y^{\prime }-\left (2 x^{3}-y\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+x^{3}+2 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-4 x \left (y+2\right ) y^{\prime }+4 \left (y+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}+x \left (x^{2}+x y-2 y\right ) y^{\prime }+\left (1-x \right ) \left (x^{2}-y\right ) y = 0 \] |
✗ |
✗ |
|
\[ {}x^{2} {y^{\prime }}^{2}+\left (y+2 x \right ) y y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}+\left (2 x -y\right ) y y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) {y^{\prime }}^{2} = 1-y^{2} \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+4 x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (a^{2}+x^{2}\right ) {y^{\prime }}^{2} = b^{2} \] |
✓ |
✓ |
|
\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+b^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2} = b^{2} \] |
✓ |
✓ |
|
\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2} = x^{2} \] |
✓ |
✓ |
|
\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+b +y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} {y^{\prime }}^{2}-4 x y y^{\prime } = 8 x^{3}-y^{2} \] |
✓ |
✓ |
|
\[ {}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+a \left (-a +1\right ) x^{2}+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (-a^{2}+1\right ) x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2} a^{2}+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} x^{3} = a \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} x^{3}+x y^{\prime }-y = 0 \] |
✓ |
✗ |
|
\[ {}{y^{\prime }}^{2} x^{3}+x^{2} y y^{\prime }+a = 0 \] |
✓ |
✓ |
|
\[ {}x \left (-x^{2}+1\right ) {y^{\prime }}^{2}-2 \left (-x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}4 x \left (-x +a \right ) \left (b -x \right ) {y^{\prime }}^{2} = \left (a b -2 x \left (a +b \right )+2 x^{2}\right )^{2} \] |
✓ |
✓ |
|
\[ {}x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} {y^{\prime }}^{2}+2 y^{\prime } y x^{3}-4 = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} {y^{\prime }}^{2}+y^{2} y^{\prime } x -y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+1 = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{4} {y^{\prime }}^{2}-x y-y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0 \] |
✓ |
✓ |
|
\[ {}x^{6} {y^{\prime }}^{2}-2 x y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{8} {y^{\prime }}^{2}+3 x y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2} = a \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2} = x \,a^{2} \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2} = {\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}+2 a x y^{\prime }-a y = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}-\left (-2 b x +a \right ) y^{\prime }-b y = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}+x^{3} y^{\prime }-x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}+y = a \] |
✓ |
✓ |
|
\[ {}\left (x +y\right ) {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}\left (2 x -y\right ) {y^{\prime }}^{2}-2 \left (1-x \right ) y^{\prime }+2-y = 0 \] |
✓ |
✓ |
|
\[ {}2 y {y^{\prime }}^{2}+\left (5-4 x \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}9 y {y^{\prime }}^{2}+4 x^{3} y^{\prime }-4 x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-a y\right ) {y^{\prime }}^{2} = a y \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-a y\right ) {y^{\prime }}^{2}-2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \] |
✓ |
✓ |
|
\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}x y {y^{\prime }}^{2}+\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}x y {y^{\prime }}^{2}-\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}x y {y^{\prime }}^{2}+\left (a +x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \] |
✓ |
✗ |
|
\[ {}x y {y^{\prime }}^{2}-\left (a -b \,x^{2}+y^{2}\right ) y^{\prime }-b x y = 0 \] |
✓ |
✗ |
|
\[ {}x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 x y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (x -2 y\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-2 x y+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x \left (x -2 y\right ) {y^{\prime }}^{2}+6 x y y^{\prime }-2 x y+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} {y^{\prime }}^{2} = a^{2} \] |
✓ |
✓ |
|
\[ {}y^{2} {y^{\prime }}^{2}-a^{2}+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} {y^{\prime }}^{2}-3 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} {y^{\prime }}^{2}-6 x^{3} y^{\prime }+4 x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} {y^{\prime }}^{2}-4 a y y^{\prime }+4 a^{2}-4 a x +y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} {y^{\prime }}^{2}-\left (1+x \right ) y y^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }+x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }+a -y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2}+2 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+a -x^{2}+2 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} {y^{\prime }}^{2}+2 a x y y^{\prime }+\left (a -1\right ) b +x^{2} a +\left (-a +1\right ) y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \] |
✓ |
✓ |
|
\[ {}\left (a^{2}-y^{2}\right ) {y^{\prime }}^{2} = y^{2} \] |
✓ |
✓ |
|
\[ {}\left (a^{2}-2 a x y+y^{2}\right ) {y^{\prime }}^{2}+2 a y y^{\prime }+y^{2} = 0 \] |
✗ |
✗ |
|
\[ {}\left (\left (-a +1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+x^{2}+\left (-a +1\right ) y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (\left (-4 a^{2}+1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}-8 a^{2} x y y^{\prime }+x^{2}+\left (-4 a^{2}+1\right ) y^{2} = 0 \] |
✓ |
✓ |
|