3.1.11 Problems 1001 to 1100

Table 3.21: First order ode




#

ODE

Mathematica

Maple





2591

\[ {}y^{\prime } = \frac {y}{2 x} \]





2606

\[ {}y^{\prime } = \frac {{\mathrm e}^{x}-\sin \left (y\right )}{x \cos \left (y\right )} \]





2607

\[ {}y^{\prime } = \frac {1-y^{2}}{2 x y+2} \]





2608

\[ {}y^{\prime } = \frac {\left (1-{\mathrm e}^{x y} y\right ) {\mathrm e}^{-x y}}{x} \]





2609

\[ {}y^{\prime } = \frac {x^{2} \left (1-y^{2}\right )+y \,{\mathrm e}^{\frac {y}{x}}}{x \left ({\mathrm e}^{\frac {y}{x}}+2 x^{2} y\right )} \]





2610

\[ {}y^{\prime } = \frac {\cos \left (x \right )-2 x y^{2}}{2 x^{2} y} \]





2611

\[ {}y^{\prime } = \sin \left (x \right ) \]





2612

\[ {}y^{\prime } = \frac {1}{x^{\frac {2}{3}}} \]





2615

\[ {}y^{\prime } = x^{2} \ln \left (x \right ) \]





2622

\[ {}y^{\prime } = 2 x y \]





2623

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]





2624

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]





2625

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]





2626

\[ {}y-\left (-1+x \right ) y^{\prime } = 0 \]





2627

\[ {}y^{\prime } = \frac {2 x \left (y-1\right )}{x^{2}+3} \]





2628

\[ {}y-x y^{\prime } = 3-2 x^{2} y^{\prime } \]





2629

\[ {}y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \]





2630

\[ {}y^{\prime } = \frac {x \left (y^{2}-1\right )}{2 \left (-2+x \right ) \left (-1+x \right )} \]





2631

\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+2 \]





2632

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]





2633

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]





2634

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = a x \]





2635

\[ {}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )} \]





2636

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]





2637

\[ {}y^{\prime } = \frac {2 \sqrt {y-1}}{3} \]





2638

\[ {}m v^{\prime } = m g -k v^{2} \]





2639

\[ {}y^{\prime }+y = 4 \,{\mathrm e}^{x} \]





2640

\[ {}y^{\prime }+\frac {2 y}{x} = 5 x^{2} \]





2641

\[ {}x^{2} y^{\prime }-4 x y = x^{7} \sin \left (x \right ) \]





2642

\[ {}y^{\prime }+2 x y = 2 x^{3} \]





2643

\[ {}y^{\prime }+\frac {2 x y}{-x^{2}+1} = 4 x \]





2644

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {4}{\left (x^{2}+1\right )^{2}} \]





2645

\[ {}2 \cos \left (x \right )^{2} y^{\prime }+y \sin \left (2 x \right ) = 4 \cos \left (x \right )^{4} \]





2646

\[ {}y^{\prime }+\frac {y}{x \ln \left (x \right )} = 9 x^{2} \]





2647

\[ {}y^{\prime }-y \tan \left (x \right ) = 8 \sin \left (x \right )^{3} \]





2648

\[ {}t x^{\prime }+2 x = 4 \,{\mathrm e}^{t} \]





2649

\[ {}y^{\prime } = \sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \]





2650

\[ {}1-y \sin \left (x \right )-\cos \left (x \right ) y^{\prime } = 0 \]





2651

\[ {}y^{\prime }-\frac {y}{x} = 2 x^{2} \ln \left (x \right ) \]





2652

\[ {}y^{\prime }+\alpha y = {\mathrm e}^{\beta x} \]





2653

\[ {}y^{\prime }+\frac {m y}{x} = \ln \left (x \right ) \]





2654

\[ {}y^{\prime }+\frac {2 y}{x} = 4 x \]





2655

\[ {}y^{\prime } \sin \left (x \right )-\cos \left (x \right ) y = \sin \left (2 x \right ) \]





2656

\[ {}x^{\prime }+\frac {2 x}{4-t} = 5 \]





2657

\[ {}y-{\mathrm e}^{x}+y^{\prime } = 0 \]





2658

\[ {}y^{\prime }-2 y = \left \{\begin {array}{cc} 1 & x \le 1 \\ 0 & 1





2659

\[ {}y^{\prime }-2 y = \left \{\begin {array}{cc} 1-x & x <1 \\ 0 & 1\le x \end {array}\right . \]





2661

\[ {}y^{\prime }+\frac {y}{x} = \cos \left (x \right ) \]





2662

\[ {}y^{\prime }+y = {\mathrm e}^{-2 x} \]





2663

\[ {}y^{\prime }+\cot \left (x \right ) y = 2 \cos \left (x \right ) \]





2664

\[ {}-y+x y^{\prime } = x^{2} \ln \left (x \right ) \]





2665

\[ {}y^{\prime } = \frac {x^{2}+x y+y^{2}}{x^{2}} \]





2666

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]





2667

\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \]





2668

\[ {}\sin \left (\frac {y}{x}\right ) \left (-y+x y^{\prime }\right ) = x \cos \left (\frac {y}{x}\right ) \]





2669

\[ {}x y^{\prime } = \sqrt {16 x^{2}-y^{2}}+y \]





2670

\[ {}-y+x y^{\prime } = \sqrt {9 x^{2}+y^{2}} \]





2671

\[ {}y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime } = 0 \]





2672

\[ {}x y^{\prime }+y \ln \left (x \right ) = y \ln \left (y\right ) \]





2673

\[ {}y^{\prime } = \frac {y^{2}+2 x y-2 x^{2}}{x^{2}-x y+y^{2}} \]





2674

\[ {}2 x y y^{\prime }-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}-2 y^{2} = 0 \]





2675

\[ {}x^{2} y^{\prime } = y^{2}+3 x y+x^{2} \]





2676

\[ {}y y^{\prime } = \sqrt {x^{2}+y^{2}}-x \]





2677

\[ {}2 x \left (y+2 x \right ) y^{\prime } = y \left (4 x -y\right ) \]





2678

\[ {}x y^{\prime } = x \tan \left (\frac {y}{x}\right )+y \]





2679

\[ {}y^{\prime } = \frac {x \sqrt {x^{2}+y^{2}}+y^{2}}{x y} \]





2680

\[ {}y^{\prime } = \frac {-2 x +4 y}{x +y} \]





2681

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]





2682

\[ {}y^{\prime } = \frac {y-\sqrt {x^{2}+y^{2}}}{x} \]





2683

\[ {}-y+x y^{\prime } = \sqrt {4 x^{2}-y^{2}} \]





2684

\[ {}y^{\prime } = \frac {a y+x}{a x -y} \]





2685

\[ {}y^{\prime } = \frac {x +\frac {y}{2}}{\frac {x}{2}-y} \]





2686

\[ {}y^{\prime }-\frac {y}{x} = \frac {4 x^{2} \cos \left (x \right )}{y} \]





2687

\[ {}y^{\prime }+\frac {y \tan \left (x \right )}{2} = 2 y^{3} \sin \left (x \right ) \]





2688

\[ {}y^{\prime }-\frac {3 y}{2 x} = 6 y^{\frac {1}{3}} x^{2} \ln \left (x \right ) \]





2689

\[ {}y^{\prime }+\frac {2 y}{x} = 6 \sqrt {x^{2}+1}\, \sqrt {y} \]





2690

\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \]





2691

\[ {}2 x \left (y^{\prime }+x^{2} y^{3}\right )+y = 0 \]





2692

\[ {}\left (x -a \right ) \left (x -b \right ) \left (y^{\prime }-\sqrt {y}\right ) = 2 \left (-a +b \right ) y \]





2693

\[ {}y^{\prime }+\frac {6 y}{x} = \frac {3 y^{\frac {2}{3}} \cos \left (x \right )}{x} \]





2694

\[ {}y^{\prime }+4 x y = 4 x^{3} \sqrt {y} \]





2695

\[ {}y^{\prime }-\frac {y}{2 x \ln \left (x \right )} = 2 x y^{3} \]





2696

\[ {}y^{\prime }-\frac {y}{\left (\pi -1\right ) x} = \frac {3 x y^{\pi }}{1-\pi } \]





2697

\[ {}2 y^{\prime }+\cot \left (x \right ) y = \frac {8 \cos \left (x \right )^{3}}{y} \]





2698

\[ {}\left (1-\sqrt {3}\right ) y^{\prime }+y \sec \left (x \right ) = y^{\sqrt {3}} \sec \left (x \right ) \]





2699

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = x y^{2} \]





2700

\[ {}y^{\prime }+\cot \left (x \right ) y = y^{3} \sin \left (x \right )^{3} \]





2701

\[ {}y^{\prime } = \left (9 x -y\right )^{2} \]





2702

\[ {}y^{\prime } = \left (4 x +y+2\right )^{2} \]





2703

\[ {}y^{\prime } = \sin \left (3 x -3 y+1\right )^{2} \]





2704

\[ {}y^{\prime } = \frac {y \left (\ln \left (x y\right )-1\right )}{x} \]





2705

\[ {}y^{\prime } = 2 x \left (x +y\right )^{2}-1 \]





2706

\[ {}y^{\prime } = \frac {x +2 y-1}{2 x -y+3} \]





2707

\[ {}y^{\prime }+p \left (x \right ) y+q \left (x \right ) y^{2} = r \left (x \right ) \]





2708

\[ {}y^{\prime }+\frac {2 y}{x}-y^{2} = -\frac {2}{x^{2}} \]





2709

\[ {}y^{\prime }+\frac {7 y}{x}-3 y^{2} = \frac {3}{x^{2}} \]





2710

\[ {}\frac {y^{\prime }}{y}+p \left (x \right ) \ln \left (y\right ) = q \left (x \right ) \]





2711

\[ {}\frac {y^{\prime }}{y}-\frac {2 \ln \left (y\right )}{x} = \frac {1-2 \ln \left (x \right )}{x} \]





2712

\[ {}\sec \left (y\right )^{2} y^{\prime }+\frac {\tan \left (y\right )}{2 \sqrt {1+x}} = \frac {1}{2 \sqrt {1+x}} \]





2713

\[ {}{\mathrm e}^{x y} y+\left (2 y-{\mathrm e}^{x y} x \right ) y^{\prime } = 0 \]