# |
ODE |
Mathematica |
Maple |
\[ {}2 x y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime } = a \left (y^{n}-y\right ) \] |
✗ |
✗ |
|
\[ {}x^{2} y^{\prime \prime }+a \left ({\mathrm e}^{y}-1\right ) = 0 \] |
✗ |
✗ |
|
\[ {}x^{2} y^{\prime \prime }+\left (1+a \right ) x y^{\prime }-x^{k} f \left (x^{k} y, x y^{\prime }+k y\right ) = 0 \] |
✗ |
✗ |
|
\[ {}x^{2} y^{\prime \prime }-\sqrt {a \,x^{2} {y^{\prime }}^{2}+b y^{2}} = 0 \] |
✗ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }-x^{4} {y^{\prime }}^{2}+4 y = 0 \] |
✗ |
✗ |
|
\[ {}9 x^{2} y^{\prime \prime }+a y^{3}+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime }-a \left (-y+x y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime }+a^{2} y^{n} = 0 \] |
✗ |
✗ |
|
\[ {}x^{4} y^{\prime \prime }-x \left (x^{2}+2 y\right ) y^{\prime }+4 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime }-x^{2} \left (x +y^{\prime }\right ) y^{\prime }+4 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime }+\left (-y+x y^{\prime }\right )^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } \sqrt {x}-y^{\frac {3}{2}} = 0 \] |
✗ |
✗ |
|
\[ {}\left (x^{2} a +b x +c \right )^{\frac {3}{2}} y^{\prime \prime }-F \left (\frac {y}{\sqrt {x^{2} a +b x +c}}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{\frac {n}{n +1}} y^{\prime \prime }-y^{\frac {2 n +1}{n +1}} = 0 \] |
✗ |
✗ |
|
\[ {}f \left (x \right )^{2} y^{\prime \prime }+f \left (x \right ) f^{\prime }\left (x \right ) y^{\prime }-h \left (y, f \left (x \right ) y^{\prime }\right ) = 0 \] |
✗ |
✗ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+{\mathrm e}^{x} y \left (c y^{2}+d \right )+{\mathrm e}^{2 x} \left (b +a y^{4}\right ) = 0 \] |
✗ |
✗ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-y^{2} \ln \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-y^{\prime }+f \left (x \right ) y^{3}+y^{2} \left (\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )}-\frac {{f^{\prime }\left (x \right )}^{2}}{f \left (x \right )^{2}}\right ) = 0 \] |
✗ |
✗ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+f \left (x \right ) y^{\prime }-f^{\prime }\left (x \right ) y-y^{3} = 0 \] |
✓ |
✗ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+f^{\prime }\left (x \right ) y^{\prime }-f^{\prime \prime }\left (x \right ) y+f \left (x \right ) y^{3}-y^{4} = 0 \] |
✓ |
✗ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }+b y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }-2 a y^{2}+b y^{3} = 0 \] |
✗ |
✗ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-\left (-1+a y\right ) y^{\prime }+2 a^{2} y^{2}-2 b^{2} y^{3}+a y = 0 \] |
✓ |
✗ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+\left (-1+a y\right ) y^{\prime }-y \left (y+1\right ) \left (b^{2} y^{2}-a^{2}\right ) = 0 \] |
✗ |
✗ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+\left (\tan \left (x \right )+\cot \left (x \right )\right ) y y^{\prime }+\left (\cos \left (x \right )^{2}-n^{2} \cot \left (x \right )^{2}\right ) y^{2} \ln \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-f \left (x \right ) y y^{\prime }-g \left (x \right ) y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+\left (g \left (x \right )+y^{2} f \left (x \right )\right ) y^{\prime }-y \left (g^{\prime }\left (x \right )-f^{\prime }\left (x \right ) y^{2}\right ) = 0 \] |
✗ |
✗ |
|
\[ {}y y^{\prime \prime }-3 {y^{\prime }}^{2}+3 y y^{\prime }-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-a {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+a \left (1+{y^{\prime }}^{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+a {y^{\prime }}^{2}+b y y^{\prime }+c y^{2}+d y^{-a +1} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+a {y^{\prime }}^{2}+f \left (x \right ) y y^{\prime }+g \left (x \right ) y^{2} = 0 \] |
✗ |
✗ |
|
\[ {}y y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{2} y^{\prime }+c y^{4} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-\frac {\left (a -1\right ) {y^{\prime }}^{2}}{a}-f \left (x \right ) y^{2} y^{\prime }+\frac {a f \left (x \right )^{2} y^{4}}{\left (2+a \right )^{2}}-\frac {a f^{\prime }\left (x \right ) y^{3}}{2+a} = 0 \] |
✓ |
✗ |
|
\[ {}y^{\prime \prime } \left (x +y\right )+{y^{\prime }}^{2}-y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } \left (x -y\right )+2 y^{\prime } \left (1+y^{\prime }\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } \left (x -y\right )-\left (1+y^{\prime }\right ) \left (1+{y^{\prime }}^{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } \left (x -y\right )-h \left (y^{\prime }\right ) = 0 \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}-8 y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}-8 y^{3}-4 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}-4 \left (2 y+x \right ) y^{2} = 0 \] |
✗ |
✗ |
|
\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (a y+b \right ) y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (b x +a y\right ) y^{2} = 0 \] |
✗ |
✗ |
|
\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}-3 y^{4} = 0 \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}+3 f \left (x \right ) y y^{\prime }+2 \left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right ) y^{2}-8 y^{3} = 0 \] |
✗ |
✗ |
|
\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2}-4 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2}+y^{2} f \left (x \right ) = 0 \] |
✗ |
✗ |
|
\[ {}2 y y^{\prime \prime }-6 {y^{\prime }}^{2}+\left (1+a y^{3}\right ) y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} \left (1+{y^{\prime }}^{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}3 y y^{\prime \prime }-5 {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+4 y = 0 \] |
✓ |
✓ |
|
\[ {}4 y y^{\prime \prime }-3 {y^{\prime }}^{2}-12 y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+a y^{3}+b y^{2}+c y = 0 \] |
✓ |
✓ |
|
\[ {}4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+\left (6 y^{2}-\frac {2 f^{\prime }\left (x \right ) y}{f \left (x \right )}\right ) y^{\prime }+y^{4}-2 y^{2} y^{\prime }+g \left (x \right ) y^{2}+f \left (x \right ) y = 0 \] |
✗ |
✗ |
|
\[ {}4 y y^{\prime \prime }-5 {y^{\prime }}^{2}+a y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}12 y y^{\prime \prime }-15 {y^{\prime }}^{2}+8 y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}n y y^{\prime \prime }-\left (n -1\right ) {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}a y y^{\prime \prime }+b {y^{\prime }}^{2}-\frac {y y^{\prime }}{\sqrt {c^{2}+x^{2}}} = 0 \] |
✓ |
✓ |
|
\[ {}a y y^{\prime \prime }-\left (a -1\right ) {y^{\prime }}^{2}+\left (2+a \right ) f \left (x \right ) y^{2} y^{\prime }+f \left (x \right )^{2} y^{4}+a f^{\prime }\left (x \right ) y^{3} = 0 \] |
✗ |
✗ |
|
\[ {}\left (a y+b \right ) y^{\prime \prime }+c {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime \prime }-x {y^{\prime }}^{2}+y y^{\prime }+x \left (d +a y^{4}\right )+y \left (c +b y^{2}\right ) = 0 \] |
✗ |
✗ |
|
\[ {}x y y^{\prime \prime }-x {y^{\prime }}^{2}+a y y^{\prime }+b x y^{3} = 0 \] |
✗ |
✗ |
|
\[ {}x y y^{\prime \prime }+2 x {y^{\prime }}^{2}+a y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+a y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime \prime }-4 x {y^{\prime }}^{2}+4 y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime \prime }+\left (\frac {a x}{\sqrt {b^{2}-x^{2}}}-x \right ) {y^{\prime }}^{2}-y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \left (x +y\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}2 x y y^{\prime \prime }-x {y^{\prime }}^{2}+y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (y-1\right ) y^{\prime \prime }-2 x^{2} {y^{\prime }}^{2}-2 x \left (y-1\right ) y^{\prime }-2 y \left (y-1\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (x +y\right ) y^{\prime \prime }-\left (-y+x y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (x -y\right ) y^{\prime \prime }+a \left (-y+x y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y y^{\prime \prime }-x^{2} \left (1+{y^{\prime }}^{2}\right )+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}a \,x^{2} y y^{\prime \prime }+b \,x^{2} {y^{\prime }}^{2}+c x y y^{\prime }+d y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x \left (1+x \right )^{2} y y^{\prime \prime }-x \left (1+x \right )^{2} {y^{\prime }}^{2}+2 \left (1+x \right )^{2} y y^{\prime }-a \left (2+x \right ) y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}8 \left (-x^{3}+1\right ) y y^{\prime \prime }-4 \left (-x^{3}+1\right ) {y^{\prime }}^{2}-12 x^{2} y y^{\prime }+3 x y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\operatorname {f0} \left (x \right ) y y^{\prime \prime }+\operatorname {f1} \left (x \right ) {y^{\prime }}^{2}+\operatorname {f2} \left (x \right ) y y^{\prime }+\operatorname {f3} \left (x \right ) y^{2} = 0 \] |
✗ |
✗ |
|
\[ {}\left (1+y^{2}\right ) y^{\prime \prime }+\left (1-2 y\right ) {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+y^{2}\right ) y^{\prime \prime }-3 y {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +y^{2}\right ) y^{\prime \prime }-2 \left (x -y^{2}\right ) {y^{\prime }}^{3}+y^{\prime } \left (1+4 y y^{\prime }\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+y^{2}\right ) y^{\prime \prime }-\left (1+{y^{\prime }}^{2}\right ) \left (-y+x y^{\prime }\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+y^{2}\right ) y^{\prime \prime }-2 \left (1+{y^{\prime }}^{2}\right ) \left (-y+x y^{\prime }\right ) = 0 \] |
✓ |
✓ |
|
\[ {}2 y \left (1-y\right ) y^{\prime \prime }-\left (1-2 y\right ) {y^{\prime }}^{2}+y \left (1-y\right ) y^{\prime } f \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}2 y \left (1-y\right ) y^{\prime \prime }-\left (-3 y+1\right ) {y^{\prime }}^{2}+h \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}2 y \left (y-1\right ) y^{\prime \prime }-\left (3 y-1\right ) {y^{\prime }}^{2}+4 y y^{\prime } \left (f \left (x \right ) y+g \left (x \right )\right )+4 y^{2} \left (y-1\right ) \left (g \left (x \right )^{2}-f \left (x \right )^{2}-g^{\prime }\left (x \right )-f^{\prime }\left (x \right )\right ) = 0 \] |
✗ |
✗ |
|
\[ {}-2 y \left (1-y\right ) y^{\prime \prime }+\left (-3 y+1\right ) {y^{\prime }}^{2}-4 y y^{\prime } \left (f \left (x \right ) y+g \left (x \right )\right )+\left (1-y\right )^{3} \left (\operatorname {f0} \left (x \right )^{2} y^{2}-\operatorname {f1} \left (x \right )^{2}\right )+4 y^{2} \left (1-y\right ) \left (f \left (x \right )^{2}-g \left (x \right )^{2}-g^{\prime }\left (x \right )-f^{\prime }\left (x \right )\right ) = 0 \] |
✗ |
✗ |
|
\[ {}3 y \left (1-y\right ) y^{\prime \prime }-2 \left (1-2 y\right ) {y^{\prime }}^{2}-h \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-y\right ) y^{\prime \prime }-3 \left (1-2 y\right ) {y^{\prime }}^{2}-h \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}a y \left (y-1\right ) y^{\prime \prime }+\left (b y+c \right ) {y^{\prime }}^{2}+h \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}a y \left (y-1\right ) y^{\prime \prime }-\left (a -1\right ) \left (2 y-1\right ) {y^{\prime }}^{2}+f y \left (y-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}a b y \left (y-1\right ) y^{\prime \prime }-\left (\left (2 a b -a -b \right ) y+\left (-a +1\right ) b \right ) {y^{\prime }}^{2}+f y \left (y-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (a^{2}-x^{2}\right ) \left (a^{2}-y^{2}\right ) y^{\prime \prime }+\left (a^{2}-x^{2}\right ) y {y^{\prime }}^{2}-x \left (a^{2}-y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y \left (y-1\right ) y^{\prime \prime }-x^{2} \left (3 y-1\right ) {y^{\prime }}^{2}+2 x y \left (y-1\right ) y^{\prime }+\left (a y^{2}+b \right ) \left (y-1\right )^{3}+c x y^{2} \left (y-1\right )+d \,x^{2} y^{2} \left (y+1\right ) = 0 \] |
✗ |
✗ |
|
\[ {}x^{3} y^{2} y^{\prime \prime }+\left (x +y\right ) \left (-y+x y^{\prime }\right )^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y \left (1+y^{2}\right ) y^{\prime \prime }+\left (1-3 y^{2}\right ) {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|