3.20.3 Problems 201 to 300

Table 3.733: Second or higher order ODE with constant coefficients




#

ODE

Mathematica

Maple





814

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0 \]





815

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]





818

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-3 y = 0 \]





822

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]





823

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]





824

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 0 \]





825

\[ {}y^{\left (6\right )}+y = 0 \]





826

\[ {}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]





827

\[ {}y^{\left (6\right )}-y^{\prime \prime } = 0 \]





828

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]





829

\[ {}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]





830

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]





831

\[ {}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]





832

\[ {}y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+6 y^{\prime \prime }+30 y^{\prime }-36 y = 0 \]





833

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]





834

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]





835

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]





836

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]





837

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]





838

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0 \]





839

\[ {}y^{\prime \prime \prime \prime }-4 y = 0 \]





840

\[ {}y^{\prime \prime }+\omega ^{2} y = \cos \left (2 t \right ) \]





841

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{-t} \]





842

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t <\infty \end {array}\right . \]





843

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t <\infty \end {array}\right . \]





844

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t <\infty \end {array}\right . \]





845

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <3 \pi \\ 0 & 3 \pi \le t <\infty \end {array}\right . \]





846

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & \pi \le t <2 \pi \\ 0 & \operatorname {otherwise} \end {array}\right . \]





847

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]





848

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & \operatorname {otherwise} \end {array}\right . \]





849

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \]





850

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \operatorname {otherwise} \end {array}\right . \]





851

\[ {}y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -3 \pi \right ) \]





852

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]





853

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = k \left (\operatorname {Heaviside}\left (t -\frac {3}{2}\right )-\operatorname {Heaviside}\left (t -\frac {5}{2}\right )\right ) \]





854

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\operatorname {Heaviside}\left (t -\frac {3}{2}\right )}{2}-\frac {\operatorname {Heaviside}\left (t -\frac {5}{2}\right )}{2} \]





855

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\operatorname {Heaviside}\left (t -5\right ) \left (t -5\right )-\operatorname {Heaviside}\left (t -5-k \right ) \left (t -5-k \right )}{k} \]





856

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right ) \]





857

\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]





858

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \delta \left (t -5\right )+\operatorname {Heaviside}\left (t -10\right ) \]





859

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \sin \left (t \right )+\delta \left (t -3 \pi \right ) \]





860

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \cos \left (t \right ) \]





861

\[ {}y^{\prime \prime }+4 y = 2 \delta \left (t -\frac {\pi }{4}\right ) \]





862

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \cos \left (t \right )+\delta \left (t -\frac {\pi }{2}\right ) \]





863

\[ {}y^{\prime \prime \prime \prime }-y = \delta \left (-1+t \right ) \]





864

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{2}+y = \delta \left (-1+t \right ) \]





865

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{4}+y = \delta \left (-1+t \right ) \]





866

\[ {}y^{\prime \prime }+y = \frac {\operatorname {Heaviside}\left (t -4+k \right )-\operatorname {Heaviside}\left (t -4-k \right )}{2 k} \]





867

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = f \left (t \right ) \]





868

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right ) \]





1087

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]





1088

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]





1089

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]





1090

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]





1091

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]





1093

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]





1094

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]





1095

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]





1110

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]





1111

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 7 x^{\frac {3}{2}} {\mathrm e}^{x} \]





1113

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sec \left (x \right ) \]





1155

\[ {}y^{\prime \prime }+9 y = \tan \left (3 x \right ) \]





1156

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \sec \left (2 x \right )^{2} \]





1157

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {4}{1+{\mathrm e}^{-x}} \]





1158

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 3 \,{\mathrm e}^{x} \sec \left (x \right ) \]





1159

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 14 x^{\frac {3}{2}} {\mathrm e}^{x} \]





1160

\[ {}y^{\prime \prime }-y = \frac {4 \,{\mathrm e}^{-x}}{1-{\mathrm e}^{-2 x}} \]





1458

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-7 y^{\prime \prime }-y^{\prime }+6 y = 0 \]





1463

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]





1464

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+7 y^{\prime }-5 y = 0 \]





1465

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]





1466

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }-9 y = 0 \]





1467

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+16 y^{\prime }-16 y = 0 \]





1468

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]





1469

\[ {}y^{\prime \prime \prime }+5 y^{\prime \prime }+9 y^{\prime }+5 y = 0 \]





1470

\[ {}4 y^{\prime \prime \prime }-8 y^{\prime \prime }+5 y^{\prime }-y = 0 \]





1471

\[ {}27 y^{\prime \prime \prime }+27 y^{\prime \prime }+9 y^{\prime }+y = 0 \]





1472

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0 \]





1473

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]





1474

\[ {}y^{\prime \prime \prime \prime }+12 y^{\prime \prime }+36 y = 0 \]





1475

\[ {}16 y^{\prime \prime \prime \prime }-72 y^{\prime \prime }+81 y = 0 \]





1476

\[ {}6 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+7 y^{\prime \prime }+5 y^{\prime }+y = 0 \]





1477

\[ {}4 y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+3 y^{\prime \prime }-13 y^{\prime }-6 y = 0 \]





1478

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+7 y^{\prime \prime }-6 y^{\prime }+2 y = 0 \]





1479

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]





1480

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y = 0 \]





1481

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]





1482

\[ {}y^{\prime \prime \prime }-2 y^{\prime }-4 y = 0 \]





1483

\[ {}3 y^{\prime \prime \prime }-y^{\prime \prime }-7 y^{\prime }+5 y = 0 \]





1484

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]





1485

\[ {}2 y^{\prime \prime \prime }-11 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]





1486

\[ {}8 y^{\prime \prime \prime }-4 y^{\prime \prime }-2 y^{\prime }+y = 0 \]





1487

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]





1488

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+7 y^{\prime \prime }+6 y^{\prime }-8 y = 0 \]





1489

\[ {}4 y^{\prime \prime \prime \prime }-13 y^{\prime \prime }+9 y = 0 \]





1490

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-8 y^{\prime }-8 y = 0 \]





1491

\[ {}4 y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+19 y^{\prime \prime }+32 y^{\prime }+12 y = 0 \]





1492

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]





1493

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]





1494

\[ {}y^{\prime \prime \prime \prime }+64 y = 0 \]