3.20.8 Problems 701 to 800

Table 3.743: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

2851

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 \,{\mathrm e}^{3 t} \]

2852

\[ {}y^{\prime \prime }-2 y^{\prime } = 30 \,{\mathrm e}^{-3 t} \]

2853

\[ {}y^{\prime \prime }-y = 12 \,{\mathrm e}^{2 t} \]

2854

\[ {}y^{\prime \prime }+4 y = 10 \,{\mathrm e}^{-t} \]

2855

\[ {}y^{\prime \prime }-y^{\prime }-6 y = -6 \,{\mathrm e}^{t}+12 \]

2856

\[ {}y^{\prime \prime }-y = 6 \cos \left (t \right ) \]

2857

\[ {}y^{\prime \prime }-9 y = 13 \sin \left (2 t \right ) \]

2858

\[ {}y^{\prime \prime }-y = 8 \sin \left (t \right )-6 \cos \left (t \right ) \]

2859

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 10 \cos \left (t \right ) \]

2860

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 20 \sin \left (2 t \right ) \]

2861

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 20 \sin \left (2 t \right ) \]

2862

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 3 \cos \left (t \right )+\sin \left (t \right ) \]

2863

\[ {}y^{\prime \prime }+4 y = 9 \sin \left (t \right ) \]

2864

\[ {}y^{\prime \prime }+y = 6 \cos \left (2 t \right ) \]

2865

\[ {}y^{\prime \prime }+9 y = 7 \sin \left (4 t \right )+14 \cos \left (4 t \right ) \]

2866

\[ {}y^{\prime \prime }-y = 0 \]

2874

\[ {}y^{\prime \prime }-y = \operatorname {Heaviside}\left (-1+t \right ) \]

2875

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 1-3 \operatorname {Heaviside}\left (t -2\right ) \]

2876

\[ {}y^{\prime \prime }-4 y = \operatorname {Heaviside}\left (-1+t \right )-\operatorname {Heaviside}\left (t -2\right ) \]

2877

\[ {}y^{\prime \prime }+y = t -\operatorname {Heaviside}\left (-1+t \right ) \left (-1+t \right ) \]

2878

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = -10 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \cos \left (t +\frac {\pi }{4}\right ) \]

2879

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 30 \operatorname {Heaviside}\left (-1+t \right ) {\mathrm e}^{1-t} \]

2880

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 5 \operatorname {Heaviside}\left (t -3\right ) \]

2881

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2 \sin \left (t \right )+\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (1+\cos \left (t \right )\right ) \]

2888

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \delta \left (-1+t \right ) \]

2889

\[ {}y^{\prime \prime }-4 y = \delta \left (t -3\right ) \]

2890

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \delta \left (t -\frac {\pi }{2}\right ) \]

2891

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = \delta \left (t -\frac {\pi }{4}\right ) \]

2892

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = \delta \left (t -2\right ) \]

2893

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = \delta \left (t -\frac {\pi }{4}\right ) \]

2894

\[ {}y^{\prime \prime }+9 y = 15 \sin \left (2 t \right )+\delta \left (t -\frac {\pi }{6}\right ) \]

2895

\[ {}y^{\prime \prime }+16 y = 4 \cos \left (3 t \right )+\delta \left (t -\frac {\pi }{3}\right ) \]

2896

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \sin \left (t \right )+\delta \left (t -\frac {\pi }{6}\right ) \]

3242

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = 0 \]

3243

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+9 y^{\prime }+9 y = 0 \]

3244

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

3245

\[ {}y^{\prime \prime \prime }+8 y = 0 \]

3246

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

3247

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

3248

\[ {}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0 \]

3249

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+16 y = 0 \]

3250

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

3251

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+5 y^{\prime \prime }+5 y^{\prime }-6 y = 0 \]

3252

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime } = 0 \]

3253

\[ {}y^{\left (6\right )}-64 y = 0 \]

3254

\[ {}y^{\prime \prime }+6 y^{\prime }+10 y = 3 x \,{\mathrm e}^{-3 x}-2 \,{\mathrm e}^{3 x} \cos \left (x \right ) \]

3255

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 x} \left (x^{2}-3 x \sin \left (x \right )\right ) \]

3256

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \left (x +{\mathrm e}^{x}\right ) \sin \left (x \right ) \]

3257

\[ {}y^{\prime \prime }+4 y = \sinh \left (x \right ) \sin \left (2 x \right ) \]

3258

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \cosh \left (x \right ) \sin \left (x \right ) \]

3259

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right )+x \cos \left (x \right ) \]

3260

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = \sin \left (2 x \right ) {\mathrm e}^{2 x}+2 x^{2} \]

3261

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime } = x^{2}+{\mathrm e}^{2 x} x \]

3262

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime } = 7 x -3 \cos \left (x \right ) \]

3263

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = \sin \left (x \right ) \cos \left (2 x \right ) \]

4572

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

4573

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

4574

\[ {}y^{\prime \prime }-y = 0 \]

4575

\[ {}6 y^{\prime \prime }-11 y^{\prime }+4 y = 0 \]

4576

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]

4577

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }-6 y = 0 \]

4578

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 0 \]

4579

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-2 y = 0 \]

4580

\[ {}y^{\prime \prime \prime \prime }-a^{2} y = 0 \]

4581

\[ {}y^{\prime \prime }-2 k y^{\prime }-2 y = 0 \]

4582

\[ {}y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y = 0 \]

4583

\[ {}y^{\prime \prime \prime \prime } = 0 \]

4584

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

4585

\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]

4586

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

4587

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

4588

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0 \]

4589

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0 \]

4590

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-11 y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

4591

\[ {}36 y^{\prime \prime \prime \prime }-37 y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

4592

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+36 y = 0 \]

4593

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

4594

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

4595

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0 \]

4596

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]

4597

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = 0 \]

4598

\[ {}y^{\prime \prime \prime }+8 y = 0 \]

4599

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

4600

\[ {}y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime } = 0 \]

4601

\[ {}y^{\prime \prime } = 0 \]

4602

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

4603

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

4604

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]

4605

\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]

4606

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \]

4607

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x} \]

4608

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{i x} \]

4609

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (x \right ) \]

4610

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (x \right ) \]

4611

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 8+6 \,{\mathrm e}^{x}+2 \sin \left (x \right ) \]

4612

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2} \]

4613

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 9 x \,{\mathrm e}^{x}+10 \,{\mathrm e}^{-x} \]

4614

\[ {}y^{\prime \prime }-3 y^{\prime } = 2 \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

4615

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+2 x \]

4616

\[ {}y^{\prime \prime }+y^{\prime } = x +\sin \left (2 x \right ) \]