3.20.24 Problems 2301 to 2400

Table 3.775: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

14047

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y = {\mathrm e}^{x} \]

14057

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

14058

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

14059

\[ {}x^{\prime \prime }+2 x^{\prime }-10 x = 0 \]

14060

\[ {}x^{\prime \prime }+x = t \cos \left (t \right )-\cos \left (t \right ) \]

14061

\[ {}y^{\prime \prime }-12 y^{\prime }+40 y = 0 \]

14062

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = 0 \]

14063

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

14086

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

14087

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

14088

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

14089

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]

14099

\[ {}16 y^{\prime \prime }+24 y^{\prime }+153 y = 0 \]

14103

\[ {}y^{\prime \prime \prime \prime }+\frac {25 y^{\prime \prime }}{2}-5 y^{\prime }+\frac {629 y}{16} = 0 \]

14108

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

14109

\[ {}y^{\prime \prime }-6 y^{\prime }+45 y = 0 \]

14112

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x \]

14113

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 2 \]

14121

\[ {}y^{\prime \prime }+4 y = t \]

14445

\[ {}y^{\prime \prime }-y = 0 \]

14446

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

14448

\[ {}y^{\prime \prime }+9 y = 0 \]

14449

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14450

\[ {}y^{\prime \prime }+9 y = 0 \]

14453

\[ {}y^{\prime \prime }+y = 2 \cos \left (t \right ) \]

14454

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 0 \]

14455

\[ {}y^{\prime \prime }+16 y = 0 \]

14456

\[ {}y^{\prime \prime }+6 y^{\prime }+18 y = 0 \]

14458

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

14459

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 0 \]

14460

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

14461

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 0 \]

14462

\[ {}y^{\prime \prime }+9 y = 0 \]

14463

\[ {}y^{\prime \prime }+49 y = 0 \]

14468

\[ {}a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

14474

\[ {}y^{\prime \prime } = 0 \]

14475

\[ {}y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

14476

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

14477

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

14478

\[ {}y^{\prime \prime }+8 y^{\prime }+12 y = 0 \]

14479

\[ {}y^{\prime \prime }+5 y^{\prime }+y = 0 \]

14480

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

14481

\[ {}4 y^{\prime \prime }+9 y = 0 \]

14482

\[ {}y^{\prime \prime }+16 y = 0 \]

14483

\[ {}y^{\prime \prime }+8 y = 0 \]

14484

\[ {}y^{\prime \prime }+7 y = 0 \]

14485

\[ {}4 y^{\prime \prime }+21 y^{\prime }+5 y = 0 \]

14486

\[ {}7 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

14487

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

14488

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

14489

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

14490

\[ {}3 y^{\prime \prime }-y^{\prime } = 0 \]

14491

\[ {}y^{\prime \prime }+y^{\prime }-12 y = 0 \]

14492

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

14493

\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = 0 \]

14494

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

14495

\[ {}y^{\prime \prime }+36 y = 0 \]

14496

\[ {}y^{\prime \prime }+100 y = 0 \]

14497

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

14498

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

14499

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

14500

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

14501

\[ {}y^{\prime \prime }+y^{\prime }-y = 0 \]

14502

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

14503

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

14504

\[ {}y^{\prime \prime }-y^{\prime }-y = 0 \]

14505

\[ {}6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

14506

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

14507

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

14510

\[ {}a y^{\prime \prime }+2 b y^{\prime }+c y = 0 \]

14511

\[ {}y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

14512

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

14513

\[ {}y^{\prime \prime }-6 y^{\prime }-16 y = 0 \]

14514

\[ {}y^{\prime \prime }-16 y = 0 \]

14515

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

14518

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]

14519

\[ {}y^{\prime \prime }+y = 8 \,{\mathrm e}^{2 t} \]

14520

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = -{\mathrm e}^{-9 t} \]

14521

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 2 \,{\mathrm e}^{3 t} \]

14522

\[ {}y^{\prime \prime }-y = 2 t -4 \]

14523

\[ {}y^{\prime \prime }-2 y^{\prime }+y = t^{2} \]

14524

\[ {}y^{\prime \prime }+2 y^{\prime } = 3-4 t \]

14525

\[ {}y^{\prime \prime }+y = \cos \left (2 t \right ) \]

14526

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (t \right )-\sin \left (t \right ) \]

14527

\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right )+t \]

14528

\[ {}y^{\prime \prime }+4 y = 3 t \,{\mathrm e}^{-t} \]

14529

\[ {}y^{\prime \prime } = 3 t^{4}-2 t \]

14530

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 2 t \,{\mathrm e}^{-2 t} \sin \left (3 t \right ) \]

14531

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -1 \]

14532

\[ {}5 y^{\prime \prime }+y^{\prime }-4 y = -3 \]

14533

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 32 t \]

14534

\[ {}16 y^{\prime \prime }-8 y^{\prime }-15 y = 75 t \]

14535

\[ {}y^{\prime \prime }+2 y^{\prime }+26 y = -338 t \]

14536

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = -32 t^{2} \]

14537

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 5 t^{2} \]

14538

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = -256 t^{3} \]

14539

\[ {}y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right ) \]

14540

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 25 \sin \left (2 t \right ) \]

14541

\[ {}y^{\prime \prime }-9 y = 54 t \sin \left (2 t \right ) \]

14542

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = -78 \cos \left (3 t \right ) \]