3.1.15 Problems 1401 to 1500

Table 3.29: First order ode

#

ODE

Mathematica

Maple

3279

\[ {}y^{\prime } = x \csc \left (x \right )-\cot \left (x \right ) y \]

3280

\[ {}y^{\prime } = \left (2 \csc \left (2 x \right )+\cot \left (x \right )\right ) y \]

3281

\[ {}y^{\prime } = \sec \left (x \right )-\cot \left (x \right ) y \]

3282

\[ {}y^{\prime } = {\mathrm e}^{x} \sin \left (x \right )+\cot \left (x \right ) y \]

3283

\[ {}y^{\prime }+\csc \left (x \right )+2 \cot \left (x \right ) y = 0 \]

3284

\[ {}y^{\prime } = 4 \csc \left (x \right ) x \sec \left (x \right )^{2}-2 y \cot \left (2 x \right ) \]

3285

\[ {}y^{\prime } = 2 \cot \left (x \right )^{2} \cos \left (2 x \right )-2 y \csc \left (2 x \right ) \]

3286

\[ {}y^{\prime } = 4 \csc \left (x \right ) x \left (\sin \left (x \right )^{3}+y\right ) \]

3287

\[ {}y^{\prime } = 4 \csc \left (x \right ) x \left (1-\tan \left (x \right )^{2}+y\right ) \]

3288

\[ {}y^{\prime } = y \sec \left (x \right ) \]

3289

\[ {}y^{\prime }+\tan \left (x \right ) = \left (1-y\right ) \sec \left (x \right ) \]

3290

\[ {}y^{\prime } = y \tan \left (x \right ) \]

3291

\[ {}y^{\prime } = \cos \left (x \right )+y \tan \left (x \right ) \]

3292

\[ {}y^{\prime } = \cos \left (x \right )-y \tan \left (x \right ) \]

3293

\[ {}y^{\prime } = \sec \left (x \right )-y \tan \left (x \right ) \]

3294

\[ {}y^{\prime } = \sin \left (2 x \right )+y \tan \left (x \right ) \]

3295

\[ {}y^{\prime } = \sin \left (2 x \right )-y \tan \left (x \right ) \]

3296

\[ {}y^{\prime } = \sin \left (x \right )+2 y \tan \left (x \right ) \]

3297

\[ {}y^{\prime } = 2+2 \sec \left (2 x \right )+2 y \tan \left (2 x \right ) \]

3298

\[ {}y^{\prime } = \csc \left (x \right )+3 y \tan \left (x \right ) \]

3299

\[ {}y^{\prime } = \left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y \]

3300

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x}-y \tanh \left (x \right ) \]

3301

\[ {}y^{\prime } = f \left (x \right ) f^{\prime }\left (x \right )+f^{\prime }\left (x \right ) y \]

3302

\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y \]

3303

\[ {}y^{\prime } = x^{2}-y^{2} \]

3304

\[ {}y^{\prime }+f \left (x \right )^{2} = f^{\prime }\left (x \right )+y^{2} \]

3305

\[ {}y^{\prime }+1-x = y \left (x +y\right ) \]

3306

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

3307

\[ {}y^{\prime } = \left (x -y\right )^{2} \]

3308

\[ {}y^{\prime } = 3-3 x +3 y+\left (x -y\right )^{2} \]

3309

\[ {}y^{\prime } = 2 x -\left (x^{2}+1\right ) y+y^{2} \]

3310

\[ {}y^{\prime } = x \left (x^{3}+2\right )-\left (2 x^{2}-y\right ) y \]

3311

\[ {}y^{\prime } = 1+x \left (-x^{3}+2\right )+\left (2 x^{2}-y\right ) y \]

3312

\[ {}y^{\prime } = \cos \left (x \right )-\left (\sin \left (x \right )-y\right ) y \]

3313

\[ {}y^{\prime } = \cos \left (2 x \right )+\left (\sin \left (2 x \right )+y\right ) y \]

3314

\[ {}y^{\prime } = f \left (x \right )+x f \left (x \right ) y+y^{2} \]

3315

\[ {}y^{\prime } = \left (3+x -4 y\right )^{2} \]

3316

\[ {}y^{\prime } = \left (1+4 x +9 y\right )^{2} \]

3317

\[ {}y^{\prime } = 3 a +3 b x +3 b y^{2} \]

3318

\[ {}y^{\prime } = a +b y^{2} \]

3319

\[ {}y^{\prime } = a x +b y^{2} \]

3320

\[ {}y^{\prime } = a +b x +c y^{2} \]

3321

\[ {}y^{\prime } = a \,x^{n -1}+b \,x^{2 n}+c y^{2} \]

3322

\[ {}y^{\prime } = x^{2} a +b y^{2} \]

3323

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2} \]

3324

\[ {}y^{\prime } = f \left (x \right )+a y+b y^{2} \]

3325

\[ {}y^{\prime } = 1+a \left (x -y\right ) y \]

3326

\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+a y^{2} \]

3327

\[ {}y^{\prime } = x y \left (3+y\right ) \]

3328

\[ {}y^{\prime } = 1-x -x^{3}+\left (2 x^{2}+1\right ) y-x y^{2} \]

3329

\[ {}y^{\prime } = x \left (2+x^{2} y-y^{2}\right ) \]

3330

\[ {}y^{\prime } = x +\left (-2 x +1\right ) y-\left (1-x \right ) y^{2} \]

3331

\[ {}y^{\prime } = a x y^{2} \]

3332

\[ {}y^{\prime } = x^{n} \left (a +b y^{2}\right ) \]

3333

\[ {}y^{\prime } = a \,x^{m}+b \,x^{n} y^{2} \]

3334

\[ {}y^{\prime } = \left (a +b y \cos \left (k x \right )\right ) y \]

3335

\[ {}y^{\prime } = \sin \left (x \right ) \left (2 \sec \left (x \right )^{2}-y\right ) \]

3336

\[ {}y^{\prime }+4 \csc \left (x \right ) = \left (3-\cot \left (x \right )\right ) y+y^{2} \sin \left (x \right ) \]

3337

\[ {}y^{\prime } = y \sec \left (x \right )+\left (\sin \left (x \right )-1\right )^{2} \]

3338

\[ {}y^{\prime }+\tan \left (x \right ) \left (1-y^{2}\right ) = 0 \]

3339

\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{2} \]

3340

\[ {}y^{\prime } = \left (a +b y+c y^{2}\right ) f \left (x \right ) \]

3341

\[ {}y^{\prime }+\left (a x +y\right ) y^{2} = 0 \]

3342

\[ {}y^{\prime } = \left (a \,{\mathrm e}^{x}+y\right ) y^{2} \]

3343

\[ {}y^{\prime }+3 a \left (y+2 x \right ) y^{2} = 0 \]

3344

\[ {}y^{\prime } = y \left (a +b y^{2}\right ) \]

3345

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3} \]

3346

\[ {}y^{\prime } = x y^{3} \]

3347

\[ {}y^{\prime }+y \left (1-x y^{2}\right ) = 0 \]

3348

\[ {}y^{\prime } = \left (a +b x y\right ) y^{2} \]

3349

\[ {}y^{\prime }+2 x y \left (1+a x y^{2}\right ) = 0 \]

3350

\[ {}y^{\prime }+\left (\tan \left (x \right )+y^{2} \sec \left (x \right )\right ) y = 0 \]

3351

\[ {}y^{\prime }+y^{3} \sec \left (x \right ) \tan \left (x \right ) = 0 \]

3352

\[ {}y^{\prime } = \operatorname {f0} \left (x \right )+\operatorname {f1} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\operatorname {f3} \left (x \right ) y^{3} \]

3353

\[ {}y^{\prime } = a \,x^{\frac {n}{1-n}}+b y^{n} \]

3354

\[ {}y^{\prime } = f \left (x \right ) y+g \left (x \right ) y^{k} \]

3355

\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{n} \]

3356

\[ {}y^{\prime } = \sqrt {{| y|}} \]

3357

\[ {}y^{\prime } = a +b y+\sqrt {\operatorname {A0} +\operatorname {B0} y} \]

3358

\[ {}y^{\prime } = a x +b \sqrt {y} \]

3359

\[ {}y^{\prime }+x^{3} = x \sqrt {x^{4}+4 y} \]

3360

\[ {}y^{\prime }+2 y \left (1-x \sqrt {y}\right ) = 0 \]

3361

\[ {}y^{\prime } = \sqrt {a +b y^{2}} \]

3362

\[ {}y^{\prime } = y \sqrt {a +b y} \]

3363

\[ {}y^{\prime }+\left (f \left (x \right )-y\right ) g \left (x \right ) \sqrt {\left (y-a \right ) \left (y-b \right )} = 0 \]

3364

\[ {}y^{\prime } = \sqrt {X Y} \]

3365

\[ {}y^{\prime } = \cos \left (x \right )^{2} \cos \left (y\right ) \]

3366

\[ {}y^{\prime } = \sec \left (x \right )^{2} \cot \left (y\right ) \cos \left (y\right ) \]

3367

\[ {}y^{\prime } = a +b \cos \left (A x +B y\right ) \]

3368

\[ {}y^{\prime }+f \left (x \right )+g \left (x \right ) \sin \left (a y\right )+h \left (x \right ) \cos \left (a y\right ) = 0 \]

3369

\[ {}y^{\prime } = a +b \cos \left (y\right ) \]

3370

\[ {}y^{\prime }+x \left (\sin \left (2 y\right )-x^{2} \cos \left (y\right )^{2}\right ) = 0 \]

3371

\[ {}y^{\prime }+\tan \left (x \right ) \sec \left (x \right ) \cos \left (y\right )^{2} = 0 \]

3372

\[ {}y^{\prime } = \cot \left (x \right ) \cot \left (y\right ) \]

3373

\[ {}y^{\prime }+\cot \left (x \right ) \cot \left (y\right ) = 0 \]

3374

\[ {}y^{\prime } = \sin \left (x \right ) \left (\csc \left (y\right )-\cot \left (y\right )\right ) \]

3375

\[ {}y^{\prime } = \tan \left (x \right ) \cot \left (y\right ) \]

3376

\[ {}y^{\prime }+\tan \left (x \right ) \cot \left (y\right ) = 0 \]

3377

\[ {}y^{\prime }+\sin \left (2 x \right ) \csc \left (2 y\right ) = 0 \]

3378

\[ {}y^{\prime } = \tan \left (x \right ) \left (\tan \left (y\right )+\sec \left (x \right ) \sec \left (y\right )\right ) \]