3.20.29 Problems 2801 to 2834

Table 3.785: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

15440

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]

15441

\[ {}x^{\prime \prime }+2 x^{\prime }+6 x = 0 \]

15442

\[ {}x^{\prime \prime }+2 x^{\prime }+x = 0 \]

15450

\[ {}y^{\prime \prime }+\lambda y = 0 \]

15451

\[ {}y^{\prime \prime }+\lambda y = 0 \]

15452

\[ {}y^{\prime \prime }-y = 0 \]

15453

\[ {}y^{\prime \prime }+y = 0 \]

15455

\[ {}y^{\prime \prime }+y = 0 \]

15456

\[ {}y^{\prime \prime }-y = 0 \]

15457

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

15458

\[ {}y^{\prime \prime }+\alpha y^{\prime } = 0 \]

15459

\[ {}y^{\prime \prime }+\alpha ^{2} y = 1 \]

15460

\[ {}y^{\prime \prime }+y = 1 \]

15461

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]

15462

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]

15463

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

15464

\[ {}y^{\prime \prime \prime \prime }-\lambda ^{4} y = 0 \]

15494

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right )^{2} \]

15495

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \pi ^{2}-x^{2} \]

15496

\[ {}y^{\prime \prime }-4 y = \cos \left (\pi x \right ) \]

15497

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \arcsin \left (\sin \left (x \right )\right ) \]

15498

\[ {}y^{\prime \prime }+9 y = \sin \left (x \right )^{3} \]

15558

\[ {}x^{\prime \prime } = 0 \]

15559

\[ {}x^{\prime \prime } = 1 \]

15560

\[ {}x^{\prime \prime } = \cos \left (t \right ) \]

15561

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]

15562

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]

15563

\[ {}x^{\prime \prime }-x^{\prime } = 1 \]

15564

\[ {}x^{\prime \prime }+x = t \]

15565

\[ {}x^{\prime \prime }+6 x^{\prime } = 12 t +2 \]

15566

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 2 \]

15567

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 4 \]

15568

\[ {}2 x^{\prime \prime }-2 x^{\prime } = \left (t +1\right ) {\mathrm e}^{t} \]

15569

\[ {}x^{\prime \prime }+x = 2 \cos \left (t \right ) \]