# |
ODE |
Mathematica |
Maple |
\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+2 x^{\prime }+6 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+2 x^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\lambda y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\lambda y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\alpha y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\alpha ^{2} y = 1 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-\lambda ^{4} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \cos \left (x \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \pi ^{2}-x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = \cos \left (\pi x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \arcsin \left (\sin \left (x \right )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = \sin \left (x \right )^{3} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime } = 1 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime } = \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-x^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x = t \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+6 x^{\prime } = 12 t +2 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 2 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 4 \] |
✓ |
✓ |
|
\[ {}2 x^{\prime \prime }-2 x^{\prime } = \left (t +1\right ) {\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x = 2 \cos \left (t \right ) \] |
✓ |
✓ |
|