3.23.4 Problems 301 to 373

Table 3.805: Higher order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

14684

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }-14 y^{\prime }-104 y = -111 \,{\mathrm e}^{t} \]

14685

\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime \prime }+38 y^{\prime \prime }-64 y^{\prime }+40 y = 153 \,{\mathrm e}^{-t} \]

14686

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \tan \left (2 t \right ) \]

14687

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right ) \tan \left (2 t \right ) \]

14688

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \sec \left (2 t \right )^{2} \]

14689

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \tan \left (2 t \right )^{2} \]

14690

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \sec \left (3 t \right ) \]

14691

\[ {}y^{\prime \prime \prime }+y^{\prime } = -\sec \left (t \right ) \tan \left (t \right ) \]

14692

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right ) \]

14693

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = -\frac {1}{t^{2}}-\frac {2}{t} \]

14694

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {{\mathrm e}^{t}}{t} \]

14695

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }-11 y^{\prime }+30 y = {\mathrm e}^{4 t} \]

14696

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-10 y^{\prime }-24 y = {\mathrm e}^{-3 t} \]

14697

\[ {}y^{\prime \prime \prime }-13 y^{\prime }+12 y = \cos \left (t \right ) \]

14698

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = \cos \left (t \right ) \]

14699

\[ {}y^{\left (6\right )}+y^{\prime \prime \prime \prime } = -24 \]

14700

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \tan \left (t \right )^{2} \]

14701

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } = 3 t^{2} \]

14702

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sec \left (t \right )^{2} \]

14703

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sec \left (t \right ) \]

14704

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \cos \left (t \right ) \]

14705

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = t \]

14855

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }+5 y = {\mathrm e}^{t} \]

14856

\[ {}y^{\prime \prime \prime }-12 y^{\prime }-16 y = {\mathrm e}^{4 t}-{\mathrm e}^{-2 t} \]

14857

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+18 y^{\prime \prime }+30 y^{\prime }+25 y = {\mathrm e}^{-t} \cos \left (2 t \right )+{\mathrm e}^{-2 t} \sin \left (t \right ) \]

14858

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }+20 y^{\prime }+25 y = t^{2} \]

15185

\[ {}y^{\prime \prime \prime \prime } = x \]

15186

\[ {}y^{\prime \prime \prime } = x +\cos \left (x \right ) \]

15260

\[ {}y^{\prime \prime \prime }+y = x \]

15261

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 1 \]

15262

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 \]

15263

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 3 \]

15264

\[ {}y^{\prime \prime \prime \prime }-y = 1 \]

15265

\[ {}y^{\prime \prime \prime \prime }-y^{\prime } = 2 \]

15266

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 3 \]

15267

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = 4 \]

15268

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 1 \]

15269

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{4 x} \]

15270

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{-x} \]

15271

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{-x} \]

15272

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

15273

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \cos \left (x \right ) \]

15274

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) x \]

15275

\[ {}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = a \sin \left (n x +\alpha \right ) \]

15276

\[ {}y^{\prime \prime \prime \prime }-2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (n x +\alpha \right ) \]

15277

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (x \right ) \]

15278

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

15279

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = x \,{\mathrm e}^{x} \]

15283

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 1 \]

15284

\[ {}5 y^{\prime \prime \prime }-7 y^{\prime \prime } = 3 \]

15285

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime } = -6 \]

15286

\[ {}3 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 2 \]

15287

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 1 \]

15310

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2}+x \]

15311

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

15313

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = x^{2}+x \]

15316

\[ {}y^{\prime \prime \prime }-y = \sin \left (x \right ) \]

15317

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

15318

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \cos \left (2 x \right ) \]

15324

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } = 1+{\mathrm e}^{x} \]

15325

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (2 x \right ) \]

15335

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = x \,{\mathrm e}^{x}+\frac {\cos \left (x \right )}{2} \]

15337

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime } = {\mathrm e}^{x}+3 \sin \left (2 x \right )+1 \]

15353

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 2 x +{\mathrm e}^{x} \]

15355

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 4 x +3 \sin \left (x \right )+\cos \left (x \right ) \]

15356

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = {\mathrm e}^{2 x} x +\sin \left (x \right )+x^{2} \]

15357

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime } = x \,{\mathrm e}^{x}-1 \]

15358

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime } = x +2 \,{\mathrm e}^{-x} \]

15373

\[ {}y^{\prime \prime \prime }-y^{\prime } = -2 x \]

15374

\[ {}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

15375

\[ {}y^{\prime \prime \prime }-y = 2 x \]

15376

\[ {}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

15426

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = \frac {-1+x}{x^{3}} \]