# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }-14 y^{\prime }-104 y = -111 \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime \prime }+38 y^{\prime \prime }-64 y^{\prime }+40 y = 153 \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \tan \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right ) \tan \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \sec \left (2 t \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \tan \left (2 t \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \sec \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+y^{\prime } = -\sec \left (t \right ) \tan \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = -\frac {1}{t^{2}}-\frac {2}{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {{\mathrm e}^{t}}{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }-11 y^{\prime }+30 y = {\mathrm e}^{4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-10 y^{\prime }-24 y = {\mathrm e}^{-3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-13 y^{\prime }+12 y = \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\left (6\right )}+y^{\prime \prime \prime \prime } = -24 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \tan \left (t \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y^{\prime \prime } = 3 t^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sec \left (t \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+y^{\prime } = \sec \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = t \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }+5 y = {\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-12 y^{\prime }-16 y = {\mathrm e}^{4 t}-{\mathrm e}^{-2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+18 y^{\prime \prime }+30 y^{\prime }+25 y = {\mathrm e}^{-t} \cos \left (2 t \right )+{\mathrm e}^{-2 t} \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }+20 y^{\prime }+25 y = t^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime } = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime } = x +\cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 3 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-y^{\prime } = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 3 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = 4 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{4 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = a \sin \left (n x +\alpha \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (n x +\alpha \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = x \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 1 \] |
✓ |
✓ |
|
\[ {}5 y^{\prime \prime \prime }-7 y^{\prime \prime } = 3 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime } = -6 \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2}+x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = x^{2}+x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \cos \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y^{\prime \prime } = 1+{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = x \,{\mathrm e}^{x}+\frac {\cos \left (x \right )}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime } = {\mathrm e}^{x}+3 \sin \left (2 x \right )+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 2 x +{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 4 x +3 \sin \left (x \right )+\cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-4 y^{\prime } = {\mathrm e}^{2 x} x +\sin \left (x \right )+x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime } = x \,{\mathrm e}^{x}-1 \] |
✓ |
✓ |
|
\[ {}y^{\left (5\right )}-y^{\prime \prime \prime } = x +2 \,{\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y^{\prime } = -2 x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y = 2 x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = \frac {-1+x}{x^{3}} \] |
✓ |
✓ |
|