3.24.1 Problems 1 to 100

Table 3.807: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

169

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

170

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

171

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

172

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

183

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

184

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

185

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }-3 y = 0 \]

186

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

187

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

210

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

211

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+25 y = 0 \]

252

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 72 x^{5} \]

253

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{3} \]

254

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{4} \]

255

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+3 y = 8 x^{\frac {4}{3}} \]

256

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = \ln \left (x \right ) \]

257

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2}-1 \]

278

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

280

\[ {}x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y = 0 \]

281

\[ {}\left (1+x \right ) y^{\prime \prime }-\left (2+x \right ) y^{\prime }+y = 0 \]

282

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

283

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

284

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

308

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime } = 0 \]

309

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

310

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

311

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

312

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0 \]

643

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

644

\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }+2 y = 0 \]

645

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+\frac {5 y}{4} = 0 \]

646

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 0 \]

647

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

648

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+5 y = 0 \]

649

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }-3 y = 0 \]

650

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+10 y = 0 \]

651

\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{-t^{2}} y = 0 \]

652

\[ {}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{3} y = 0 \]

669

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

670

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y = 0 \]

671

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

672

\[ {}t^{2} y^{\prime \prime }-t \left (2+t \right ) y^{\prime }+\left (2+t \right ) y = 0 \]

673

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

674

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

675

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y = 0 \]

676

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

677

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]

678

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+\frac {y}{4} = 0 \]

679

\[ {}2 t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

680

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

681

\[ {}4 t^{2} y^{\prime \prime }-8 t y^{\prime }+9 y = 0 \]

682

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }+13 y = 0 \]

695

\[ {}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

696

\[ {}t^{2} y^{\prime \prime }-t \left (2+t \right ) y^{\prime }+\left (2+t \right ) y = 2 t^{3} \]

697

\[ {}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t} \]

698

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (-1+t \right )^{2} {\mathrm e}^{-t} \]

699

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \ln \left (x \right ) \]

700

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]

701

\[ {}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2} \]

702

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \]

703

\[ {}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t} \]

704

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (-1+t \right ) {\mathrm e}^{-t} \]

710

\[ {}u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5} = \cos \left (t \right ) \]

813

\[ {}t \left (-1+t \right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

816

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

817

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

819

\[ {}t y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }+t y = 0 \]

820

\[ {}\left (2-t \right ) y^{\prime \prime \prime }+\left (2 t -3\right ) y^{\prime \prime }-t y^{\prime }+y = 0 \]

821

\[ {}t^{2} \left (3+t \right ) y^{\prime \prime \prime }-3 t \left (2+t \right ) y^{\prime \prime }+6 \left (t +1\right ) y^{\prime }-6 y = 0 \]

1092

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

1096

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

1097

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

1098

\[ {}x^{2} y^{\prime \prime }-\left (-1+2 a \right ) x y^{\prime }+a^{2} y = 0 \]

1099

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 0 \]

1100

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

1101

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

1102

\[ {}4 x^{2} \sin \left (x \right ) y^{\prime \prime }-4 x \left (x \cos \left (x \right )+\sin \left (x \right )\right ) y^{\prime }+\left (2 x \cos \left (x \right )+3 \sin \left (x \right )\right ) y = 0 \]

1103

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\left (6 x -8\right ) y = 0 \]

1104

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

1105

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (1+x \right ) y = 0 \]

1106

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

1107

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = \left (2 x +1\right )^{2} \]

1108

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {4}{x^{2}} \]

1109

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

1112

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \left (1+4 x \right ) \]

1114

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 8 \,{\mathrm e}^{-x \left (2+x \right )} \]

1115

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = -6 x -4 \]

1116

\[ {}x^{2} y^{\prime \prime }+2 x \left (-1+x \right ) y^{\prime }+\left (x^{2}-2 x +2\right ) y = x^{3} {\mathrm e}^{2 x} \]

1117

\[ {}x^{2} y^{\prime \prime }-x \left (2 x -1\right ) y^{\prime }+\left (x^{2}-x -1\right ) y = {\mathrm e}^{x} x^{2} \]

1118

\[ {}\left (-2 x +1\right ) y^{\prime \prime }+2 y^{\prime }+\left (2 x -3\right ) y = \left (4 x^{2}-4 x +1\right ) {\mathrm e}^{x} \]

1119

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 4 x^{4} \]

1120

\[ {}2 x y^{\prime \prime }+\left (1+4 x \right ) y^{\prime }+\left (2 x +1\right ) y = 3 \sqrt {x}\, {\mathrm e}^{-x} \]

1121

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = -{\mathrm e}^{-x} \]

1122

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (1+x \right ) y^{\prime }+\left (2 x +3\right ) y = 4 x^{\frac {5}{2}} {\mathrm e}^{2 x} \]

1123

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 4 x^{2} \]

1124

\[ {}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (-2+x \right ) y = 0 \]

1125

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

1126

\[ {}x^{2} \ln \left (x \right )^{2} y^{\prime \prime }-2 x \ln \left (x \right ) y^{\prime }+\left (2+\ln \left (x \right )\right ) y = 0 \]

1127

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

1128

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y = 0 \]