3.24.14 Problems 1301 to 1400

Table 3.833: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

8021

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (x^{2}+3\right ) y^{\prime }-\left (-5 x^{2}+1\right ) y = 0 \]

8022

\[ {}6 x^{2} y^{\prime \prime }+x \left (6 x^{2}+1\right ) y^{\prime }+\left (9 x^{2}+1\right ) y = 0 \]

8023

\[ {}9 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+3\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y = 0 \]

8024

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y = 0 \]

8025

\[ {}8 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+2 x \left (34 x^{2}+5\right ) y^{\prime }-\left (-30 x^{2}+1\right ) y = 0 \]

8026

\[ {}2 x^{2} \left (1+x \right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y = 0 \]

8027

\[ {}6 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (50 x^{2}+1\right ) y^{\prime }+\left (30 x^{2}+1\right ) y = 0 \]

8028

\[ {}28 x^{2} \left (1-3 x \right ) y^{\prime \prime }-7 x \left (5+9 x \right ) y^{\prime }+7 \left (2+9 x \right ) y = 0 \]

8029

\[ {}8 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+2 x \left (-21 x^{2}+10\right ) y^{\prime }-\left (35 x^{2}+2\right ) y = 0 \]

8030

\[ {}4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }-4 x \left (-3 x^{2}-3 x +1\right ) y^{\prime }+3 \left (x^{2}-x +1\right ) y = 0 \]

8031

\[ {}3 x^{2} \left (1+x \right )^{2} y^{\prime \prime }-x \left (-11 x^{2}-10 x +1\right ) y^{\prime }+\left (5 x^{2}+1\right ) y = 0 \]

8032

\[ {}4 x^{2} \left (x^{2}+2 x +3\right ) y^{\prime \prime }-x \left (-15 x^{2}-14 x +3\right ) y^{\prime }+\left (7 x^{2}+3\right ) y = 0 \]

8033

\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

8034

\[ {}2 x^{2} \left (2+x \right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (1+x \right ) y = 0 \]

8035

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-2 x \left (2 x^{2}+1\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

8036

\[ {}x^{2} y^{\prime \prime }-x \left (5-x \right ) y^{\prime }+\left (9-4 x \right ) y = 0 \]

8037

\[ {}4 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+12 x^{2} \left (1+x \right ) y^{\prime }+\left (3 x^{2}+3 x +1\right ) y = 0 \]

8038

\[ {}x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }-x \left (-2 x^{2}-4 x +1\right ) y^{\prime }+y = 0 \]

8039

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (-2 x^{2}+3 x +5\right ) y^{\prime }+\left (-14 x^{2}+12 x +1\right ) y = 0 \]

8040

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (3 x^{2}+14 x +5\right ) y^{\prime }+\left (12 x^{2}+18 x +4\right ) y = 0 \]

8041

\[ {}16 x^{2} y^{\prime \prime }+4 x \left (2 x^{2}+x +6\right ) y^{\prime }+\left (18 x^{2}+5 x +1\right ) y = 0 \]

8042

\[ {}9 x^{2} \left (1+x \right ) y^{\prime \prime }+3 x \left (-x^{2}+11 x +5\right ) y^{\prime }+\left (-7 x^{2}+16 x +1\right ) y = 0 \]

8043

\[ {}36 x^{2} \left (-2 x +1\right ) y^{\prime \prime }+24 x \left (1-9 x \right ) y^{\prime }+\left (1-70 x \right ) y = 0 \]

8044

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }-x \left (3-x \right ) y^{\prime }+4 y = 0 \]

8045

\[ {}x^{2} \left (-2 x +1\right ) y^{\prime \prime }-x \left (5-4 x \right ) y^{\prime }+\left (9-4 x \right ) y = 0 \]

8046

\[ {}2 x^{2} \left (2+x \right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (1-x \right ) y = 0 \]

8047

\[ {}2 x^{2} \left (1+x \right ) y^{\prime \prime }-x \left (6-x \right ) y^{\prime }+\left (8-x \right ) y = 0 \]

8048

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (5+9 x \right ) y^{\prime }+\left (3 x +4\right ) y = 0 \]

8049

\[ {}x^{2} \left (-2 x +1\right ) y^{\prime \prime }-x \left (5+4 x \right ) y^{\prime }+\left (9+4 x \right ) y = 0 \]

8050

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (7+x \right ) y^{\prime }+\left (9-x \right ) y = 0 \]

8051

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

8052

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-3 x \left (-x^{2}+1\right ) y^{\prime }+4 y = 0 \]

8053

\[ {}4 x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (3 x^{2}+1\right ) y = 0 \]

8054

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-2 x^{2}+1\right ) y^{\prime }+y = 0 \]

8055

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+7 x^{3} y^{\prime }+\left (3 x^{2}+1\right ) y = 0 \]

8056

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-4 x^{2}+1\right ) y^{\prime }+\left (2 x^{2}+1\right ) y = 0 \]

8057

\[ {}4 x^{2} \left (x^{2}+4\right ) y^{\prime \prime }+3 x \left (3 x^{2}+8\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y = 0 \]

8058

\[ {}3 x^{2} \left (x^{2}+3\right ) y^{\prime \prime }+x \left (11 x^{2}+3\right ) y^{\prime }+\left (5 x^{2}+1\right ) y = 0 \]

8059

\[ {}9 x^{2} y^{\prime \prime }-3 x \left (-2 x^{2}+7\right ) y^{\prime }+\left (2 x^{2}+25\right ) y = 0 \]

8060

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

8061

\[ {}x^{2} \left (-2 x +1\right ) y^{\prime \prime }+3 x y^{\prime }+\left (1+4 x \right ) y = 0 \]

8062

\[ {}x \left (1+x \right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

8063

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }-x \left (3-5 x \right ) y^{\prime }+\left (4-5 x \right ) y = 0 \]

8064

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (9 x^{2}+1\right ) y^{\prime }+\left (25 x^{2}+1\right ) y = 0 \]

8065

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (-x^{2}+1\right ) y^{\prime }+\left (7 x^{2}+1\right ) y = 0 \]

8066

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }-8 x y = 0 \]

8067

\[ {}4 x^{2} y^{\prime \prime }+2 x \left (-x^{2}+4\right ) y^{\prime }+\left (7 x^{2}+1\right ) y = 0 \]

8068

\[ {}4 x^{2} \left (1+x \right ) y^{\prime \prime }+8 x^{2} y^{\prime }+\left (1+x \right ) y = 0 \]

8069

\[ {}9 x^{2} \left (x +3\right ) y^{\prime \prime }+3 x \left (3+7 x \right ) y^{\prime }+\left (4 x +3\right ) y = 0 \]

8070

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (3 x^{2}+2\right ) y^{\prime }+\left (-x^{2}+2\right ) y = 0 \]

8071

\[ {}16 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 x \left (9 x^{2}+1\right ) y^{\prime }+\left (49 x^{2}+1\right ) y = 0 \]

8072

\[ {}x^{2} \left (3 x +4\right ) y^{\prime \prime }-x \left (4-3 x \right ) y^{\prime }+4 y = 0 \]

8073

\[ {}4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }+8 x^{2} \left (2 x +3\right ) y^{\prime }+\left (9 x^{2}+3 x +1\right ) y = 0 \]

8074

\[ {}x^{2} \left (1-x \right )^{2} y^{\prime \prime }-x \left (-3 x^{2}+2 x +1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

8075

\[ {}9 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+7 x +1\right ) y^{\prime }+\left (25 x^{2}+4 x +1\right ) y = 0 \]

8076

\[ {}2 x^{2} \left (2+x \right ) y^{\prime \prime }-x \left (4-7 x \right ) y^{\prime }-\left (5-3 x \right ) y = 0 \]

8077

\[ {}x^{2} \left (-2 x +1\right ) y^{\prime \prime }+x \left (8-9 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

8078

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (10 x^{2}+3\right ) y^{\prime }-\left (-14 x^{2}+15\right ) y = 0 \]

8079

\[ {}x^{2} \left (-2 x^{2}+1\right ) y^{\prime \prime }+x \left (-13 x^{2}+7\right ) y^{\prime }-14 x^{2} y = 0 \]

8080

\[ {}4 x^{2} \left (1+x \right ) y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }-\left (3 x +1\right ) y = 0 \]

8081

\[ {}2 x^{2} \left (2+3 x \right ) y^{\prime \prime }+x \left (4+21 x \right ) y^{\prime }-\left (1-9 x \right ) y = 0 \]

8082

\[ {}x^{2} y^{\prime \prime }+x \left (2+x \right ) y^{\prime }-\left (2-3 x \right ) y = 0 \]

8083

\[ {}4 x^{2} \left (1+x \right ) y^{\prime \prime }+4 x \left (3+8 x \right ) y^{\prime }-\left (5-49 x \right ) y = 0 \]

8084

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }-x \left (3+10 x \right ) y^{\prime }+30 x y = 0 \]

8085

\[ {}x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-3 \left (x +3\right ) y = 0 \]

8086

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (9+13 x \right ) y^{\prime }+\left (7+5 x \right ) y = 0 \]

8087

\[ {}4 x^{2} \left (2 x +1\right ) y^{\prime \prime }-2 x \left (4-x \right ) y^{\prime }-\left (7+5 x \right ) y = 0 \]

8088

\[ {}3 x^{2} \left (x +3\right ) y^{\prime \prime }-x \left (15+x \right ) y^{\prime }-20 y = 0 \]

8089

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (1-10 x \right ) y^{\prime }-\left (9-10 x \right ) y = 0 \]

8090

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+3 x^{2} y^{\prime }-\left (6-x \right ) y = 0 \]

8091

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }-2 x \left (3+14 x \right ) y^{\prime }+\left (6+100 x \right ) y = 0 \]

8092

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }-x \left (6+11 x \right ) y^{\prime }+\left (6+32 x \right ) y = 0 \]

8093

\[ {}4 x^{2} \left (1+x \right ) y^{\prime \prime }+4 x \left (1+4 x \right ) y^{\prime }-\left (49+27 x \right ) y = 0 \]

8094

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-2 x^{2}+7\right ) y^{\prime }+12 y = 0 \]

8095

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+7\right ) y^{\prime }+12 y = 0 \]

8096

\[ {}x^{2} y^{\prime \prime }+x \left (2 x^{2}+1\right ) y^{\prime }-\left (-10 x^{2}+1\right ) y = 0 \]

8097

\[ {}x^{2} y^{\prime \prime }+x \left (-2 x^{2}+1\right ) y^{\prime }-4 \left (2 x^{2}+1\right ) y = 0 \]

8098

\[ {}x^{2} y^{\prime \prime }+x \left (-3 x^{2}+1\right ) y^{\prime }-4 \left (-3 x^{2}+1\right ) y = 0 \]

8099

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (11 x^{2}+5\right ) y^{\prime }+24 x^{2} y = 0 \]

8100

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 x y^{\prime }-\left (-x^{2}+35\right ) y = 0 \]

8101

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-x^{2}+5\right ) y^{\prime }-\left (25 x^{2}+7\right ) y = 0 \]

8102

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+5\right ) y^{\prime }-21 y = 0 \]

8103

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (x^{2}+2\right ) y^{\prime }-\left (x^{2}+15\right ) y = 0 \]

8104

\[ {}y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

8105

\[ {}y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

8106

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

8107

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

8108

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

8109

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y = 0 \]

8110

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

8111

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = 0 \]

8112

\[ {}y^{\prime \prime }+\left (t^{2}+2 t +1\right ) y^{\prime }-\left (4+4 t \right ) y = 0 \]

8113

\[ {}2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y = 0 \]

8114

\[ {}2 t y^{\prime \prime }+\left (t +1\right ) y^{\prime }-2 y = 0 \]

8115

\[ {}2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (t +1\right ) y = 0 \]

8116

\[ {}2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y = 0 \]

8117

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+t \right ) y^{\prime }-y = 0 \]

8118

\[ {}t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y = 0 \]

8119

\[ {}t^{2} y^{\prime \prime }+t \left (t +1\right ) y^{\prime }-y = 0 \]

8120

\[ {}t y^{\prime \prime }-\left (4+t \right ) y^{\prime }+2 y = 0 \]