3.24.20 Problems 1901 to 2000

Table 3.845: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

9631

\[ {}\left (x^{2} a +b x +c \right ) y^{\prime \prime }+\left (d x +f \right ) y^{\prime }+g y = 0 \]

9632

\[ {}x^{3} y^{\prime \prime }+x y^{\prime }-\left (2 x +3\right ) y = 0 \]

9633

\[ {}x^{3} y^{\prime \prime }+2 x y^{\prime }-y = 0 \]

9634

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+\left (x^{2} a +b x +a \right ) y = 0 \]

9635

\[ {}x^{3} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-2 y = 0 \]

9636

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime }+x y-\ln \left (x \right )^{3} = 0 \]

9637

\[ {}x^{3} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+x y = 0 \]

9638

\[ {}x^{3} y^{\prime \prime }+3 x^{2} y^{\prime }+x y-1 = 0 \]

9639

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (2 x^{2}+1\right ) y^{\prime }-v \left (v +1\right ) x y = 0 \]

9640

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+2 \left (x^{2}-1\right ) y^{\prime }-2 x y = 0 \]

9641

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (2 \left (n +1\right ) x^{2}+2 n +1\right ) y^{\prime }-\left (v -n \right ) \left (v +n +1\right ) x y = 0 \]

9642

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }-\left (2 \left (n -1\right ) x^{2}+2 n -1\right ) y^{\prime }+\left (v +n \right ) \left (-v +n -1\right ) x y = 0 \]

9643

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime }+y a \,x^{3} = 0 \]

9644

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }-x y = 0 \]

9645

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+\left (3 x^{2}-1\right ) y^{\prime }+x y = 0 \]

9646

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+\left (x^{2} a +b \right ) y^{\prime }+c x y = 0 \]

9647

\[ {}x \left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime }-6 x y = 0 \]

9648

\[ {}x \left (x^{2}-2\right ) y^{\prime \prime }-\left (x^{3}+3 x^{2}-2 x -2\right ) y^{\prime }+\left (x^{2}+4 x +2\right ) y = 0 \]

9649

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+\left (2 x +1\right ) y = 0 \]

9650

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+2 x \left (2+3 x \right ) y^{\prime } = 0 \]

9651

\[ {}y^{\prime \prime } = -\frac {2 \left (-2+x \right ) y^{\prime }}{x \left (-1+x \right )}+\frac {2 \left (1+x \right ) y}{x^{2} \left (-1+x \right )} \]

9652

\[ {}y^{\prime \prime } = \frac {\left (5 x -4\right ) y^{\prime }}{x \left (-1+x \right )}-\frac {\left (9 x -6\right ) y}{x^{2} \left (-1+x \right )} \]

9653

\[ {}y^{\prime \prime } = -\frac {\left (\left (a +b +1\right ) x +\alpha +\beta -1\right ) y^{\prime }}{x \left (-1+x \right )}-\frac {\left (a b x -\alpha \beta \right ) y}{x^{2} \left (-1+x \right )} \]

9654

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{1+x}-\frac {y}{x \left (1+x \right )^{2}} \]

9655

\[ {}y^{\prime \prime } = \frac {2 y^{\prime }}{x \left (-2+x \right )}-\frac {y}{x^{2} \left (-2+x \right )} \]

9656

\[ {}y^{\prime \prime } = \frac {2 y}{x \left (-1+x \right )^{2}} \]

9657

\[ {}y^{\prime \prime } = -\frac {\left (\left (\alpha +\beta +1\right ) x^{2}-\left (\alpha +\beta +1+a \left (\gamma +\delta \right )-\delta \right ) x +a \gamma \right ) y^{\prime }}{x \left (-1+x \right ) \left (x -a \right )}-\frac {\left (\alpha \beta x -q \right ) y}{x \left (-1+x \right ) \left (x -a \right )} \]

9658

\[ {}y^{\prime \prime } = -\frac {\left (A \,x^{2}+B x +C \right ) y^{\prime }}{\left (x -a \right ) \left (x -b \right ) \left (x -c \right )}-\frac {\left (\operatorname {DD} x +E \right ) y}{\left (x -a \right ) \left (x -b \right ) \left (x -c \right )} \]

9659

\[ {}y^{\prime \prime } = \frac {\left (x -4\right ) y^{\prime }}{2 x \left (-2+x \right )}-\frac {\left (x -3\right ) y}{2 x^{2} \left (-2+x \right )} \]

9660

\[ {}y^{\prime \prime } = \frac {y^{\prime }}{1+x}-\frac {\left (3 x +1\right ) y}{4 x^{2} \left (1+x \right )} \]

9661

\[ {}y^{\prime \prime } = -\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (-1+x \right )}+\frac {v \left (v +1\right ) y}{4 x^{2}} \]

9662

\[ {}y^{\prime \prime } = -\frac {\left (\left (1+a \right ) x -1\right ) y^{\prime }}{x \left (-1+x \right )}-\frac {\left (\left (a^{2}-b^{2}\right ) x +c^{2}\right ) y}{4 x^{2} \left (-1+x \right )} \]

9663

\[ {}y^{\prime \prime } = -\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (-1+x \right )}-\frac {\left (a x +b \right ) y}{4 x \left (-1+x \right )^{2}} \]

9664

\[ {}y^{\prime \prime } = -\frac {\left (1-3 x \right ) y}{\left (-1+x \right ) \left (2 x -1\right )^{2}} \]

9665

\[ {}y^{\prime \prime } = -\frac {\left (3 x +a +2 b \right ) y^{\prime }}{2 \left (x +a \right ) \left (x +b \right )}-\frac {\left (a -b \right ) y}{4 \left (x +a \right )^{2} \left (x +b \right )} \]

9666

\[ {}y^{\prime \prime } = \frac {\left (6 x -1\right ) y^{\prime }}{3 x \left (-2+x \right )}+\frac {y}{3 x^{2} \left (-2+x \right )} \]

9667

\[ {}y^{\prime \prime } = -\frac {\left (a \left (b +2\right ) x^{2}+\left (c -d +1\right ) x \right ) y^{\prime }}{\left (a x +1\right ) x^{2}}-\frac {\left (a b x -c d \right ) y}{\left (a x +1\right ) x^{2}} \]

9668

\[ {}y^{\prime \prime } = \frac {2 \left (a x +2 b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (2 a x +6 b \right ) y}{\left (a x +b \right ) x^{2}} \]

9669

\[ {}y^{\prime \prime } = -\frac {\left (2 a x +b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (a v x -b \right ) y}{\left (a x +b \right ) x^{2}}+A x \]

9670

\[ {}y^{\prime \prime } = -\frac {a y}{x^{4}} \]

9671

\[ {}y^{\prime \prime } = -\frac {\left (x^{2} a \left (-a +1\right )-b \left (x +b \right )\right ) y}{x^{4}} \]

9672

\[ {}y^{\prime \prime } = -\frac {\left ({\mathrm e}^{\frac {2}{x}}-v^{2}\right ) y}{x^{4}} \]

9673

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x^{3}}+\frac {2 y}{x^{4}} \]

9674

\[ {}y^{\prime \prime } = \frac {\left (a +b \right ) y^{\prime }}{x^{2}}-\frac {\left (x \left (a +b \right )+a b \right ) y}{x^{4}} \]

9675

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {y}{x^{4}} \]

9676

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {\left (b \,x^{2}+a \left (x^{4}+1\right )\right ) y}{x^{4}} \]

9677

\[ {}y^{\prime \prime } = -\frac {\left (x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {y}{x^{4}} \]

9678

\[ {}y^{\prime \prime } = -\frac {2 y^{\prime }}{x}-\frac {a^{2} y}{x^{4}} \]

9679

\[ {}y^{\prime \prime } = -\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}+\frac {y}{x^{4}} \]

9680

\[ {}y^{\prime \prime } = -\frac {2 \left (x +a \right ) y^{\prime }}{x^{2}}-\frac {b y}{x^{4}} \]

9681

\[ {}y^{\prime \prime } = \frac {\left (2 x^{2}-1\right ) y^{\prime }}{x^{3}}-\frac {y}{x^{4}} \]

9682

\[ {}y^{\prime \prime } = \frac {\left (2 x^{2}-1\right ) y^{\prime }}{x^{3}}-\frac {2 y}{x^{4}} \]

9683

\[ {}y^{\prime \prime } = -\frac {\left (x^{3}-1\right ) y^{\prime }}{x \left (x^{3}+1\right )}+\frac {x y}{x^{3}+1} \]

9684

\[ {}y^{\prime \prime } = -\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x \left (x^{2}+1\right )}-\frac {\left (-v \left (v +1\right ) x^{2}-n^{2}\right ) y}{x^{2} \left (x^{2}+1\right )} \]

9685

\[ {}y^{\prime \prime } = -\frac {\left (x^{2} a +a -1\right ) y^{\prime }}{x \left (x^{2}+1\right )}-\frac {\left (b \,x^{2}+c \right ) y}{x^{2} \left (x^{2}+1\right )} \]

9686

\[ {}y^{\prime \prime } = \frac {\left (x^{2}-2\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (x^{2}-2\right ) y}{x^{2} \left (x^{2}-1\right )} \]

9687

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}-\frac {v \left (v +1\right ) y}{x^{2} \left (x^{2}-1\right )} \]

9688

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}+\frac {v \left (v +1\right ) y}{x^{2}} \]

9689

\[ {}y^{\prime \prime } = \frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (a \left (1+a \right )-a \,x^{2} \left (a +3\right )\right ) y}{x^{2} \left (x^{2}-1\right )} \]

9690

\[ {}x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-2 x^{3} y^{\prime }-\left (\left (a -n \right ) \left (a +n +1\right ) x^{2} \left (x^{2}-1\right )+2 x^{2} a +n \left (n +1\right ) \left (x^{2}-1\right )\right ) y = 0 \]

9691

\[ {}y^{\prime \prime } = -\frac {\left (x^{2} a +a -2\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {b y}{x^{2}} \]

9692

\[ {}y^{\prime \prime } = \frac {\left (2 b c \,x^{c} \left (x^{2}-1\right )+2 \left (a -1\right ) x^{2}-2 a \right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (b^{2} c^{2} x^{2 c} \left (x^{2}-1\right )+b c \,x^{c +2} \left (2 a -c -1\right )-b c \,x^{c} \left (2 a -c +1\right )+x^{2} \left (a \left (a -1\right )-v \left (v +1\right )\right )-a \left (1+a \right )\right ) y}{x^{2} \left (x^{2}-1\right )} \]

9693

\[ {}y^{\prime \prime } = -\frac {a y}{\left (x^{2}+1\right )^{2}} \]

9694

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}+1}-\frac {y}{\left (x^{2}+1\right )^{2}} \]

9695

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}+1}-\frac {\left (a^{2} \left (x^{2}+1\right )^{2}-n \left (n +1\right ) \left (x^{2}+1\right )+m^{2}\right ) y}{\left (x^{2}+1\right )^{2}} \]

9696

\[ {}y^{\prime \prime } = -\frac {a x y^{\prime }}{x^{2}+1}-\frac {b y}{\left (x^{2}+1\right )^{2}} \]

9697

\[ {}y^{\prime \prime } = -\frac {a y}{\left (x^{2}-1\right )^{2}} \]

9698

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}+\frac {a^{2} y}{\left (x^{2}-1\right )^{2}} \]

9699

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (-a^{2}-\lambda \left (x^{2}-1\right )\right ) y}{\left (x^{2}-1\right )^{2}} \]

9700

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (\left (x^{2}-1\right ) \left (x^{2} a +b x +c \right )-k^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \]

9701

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (-a^{2} \left (x^{2}-1\right )^{2}-n \left (n +1\right ) \left (x^{2}-1\right )-m^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \]

9702

\[ {}y^{\prime \prime } = \frac {2 x \left (-1+2 a \right ) y^{\prime }}{x^{2}-1}-\frac {\left (x^{2} \left (2 a \left (-1+2 a \right )-v \left (v +1\right )\right )+2 a +v \left (v +1\right )\right ) y}{\left (x^{2}-1\right )^{2}} \]

9703

\[ {}y^{\prime \prime } = -\frac {2 x \left (n +1-2 a \right ) y^{\prime }}{x^{2}-1}-\frac {\left (4 a \,x^{2} \left (a -n \right )-\left (x^{2}-1\right ) \left (2 a +\left (v -n \right ) \left (v +n +1\right )\right )\right ) y}{\left (x^{2}-1\right )^{2}} \]

9704

\[ {}y^{\prime \prime } = -\frac {\left (2 x^{2}+a \right ) y^{\prime }}{x \left (x^{2}+a \right )}-\frac {b y}{x^{2} \left (x^{2}+a \right )} \]

9705

\[ {}y^{\prime \prime } = -\frac {b^{2} y}{\left (a^{2}+x^{2}\right )^{2}} \]

9706

\[ {}y^{\prime \prime } = -\frac {2 \left (x^{2}-1\right ) y^{\prime }}{x \left (-1+x \right )^{2}}-\frac {\left (-2 x^{2}+2 x +2\right ) y}{x^{2} \left (-1+x \right )^{2}} \]

9707

\[ {}y^{\prime \prime } = \frac {12 y}{\left (1+x \right )^{2} \left (x^{2}+2 x +3\right )} \]

9708

\[ {}y^{\prime \prime } = -\frac {b y}{x^{2} \left (x -a \right )^{2}} \]

9709

\[ {}y^{\prime \prime } = -\frac {b y}{x^{2} \left (x -a \right )^{2}}+c \]

9710

\[ {}y^{\prime \prime } = \frac {c y}{\left (x -a \right )^{2} \left (x -b \right )^{2}} \]

9711

\[ {}y^{\prime \prime } = -\frac {\left (\left (\alpha +\beta +1\right ) \left (x -a \right )^{2} \left (x -b \right )+\left (1-\alpha -\beta \right ) \left (x -b \right )^{2} \left (x -a \right )\right ) y^{\prime }}{\left (x -a \right )^{2} \left (x -b \right )^{2}}-\frac {\alpha \beta \left (a -b \right )^{2} y}{\left (x -a \right )^{2} \left (x -b \right )^{2}} \]

9712

\[ {}y^{\prime \prime } = -\frac {\left (-x^{2} \left (a^{2}-1\right )+2 \left (a +3\right ) b x -b^{2}\right ) y}{4 x^{2}} \]

9713

\[ {}y^{\prime \prime } = -\frac {\left (x^{2} a +a -3\right ) y}{4 \left (x^{2}+1\right )^{2}} \]

9714

\[ {}y^{\prime \prime } = \frac {18 y}{\left (2 x +1\right )^{2} \left (x^{2}+x +1\right )} \]

9715

\[ {}y^{\prime \prime } = \frac {3 y}{4 \left (x^{2}+x +1\right )^{2}} \]

9716

\[ {}y^{\prime \prime } = -\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (-1+x \right )}-\frac {\left (v \left (v +1\right ) \left (-1+x \right )-x \,a^{2}\right ) y}{4 x^{2} \left (-1+x \right )^{2}} \]

9717

\[ {}y^{\prime \prime } = -\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (-1+x \right )}-\frac {\left (-v \left (v +1\right ) \left (-1+x \right )^{2}-4 n^{2} x \right ) y}{4 x^{2} \left (-1+x \right )^{2}} \]

9718

\[ {}y^{\prime \prime } = -\frac {3 y}{16 x^{2} \left (-1+x \right )^{2}} \]

9719

\[ {}y^{\prime \prime } = \frac {\left (7 x^{2} a +5\right ) y^{\prime }}{x \left (x^{2} a +1\right )}-\frac {\left (15 x^{2} a +5\right ) y}{x^{2} \left (x^{2} a +1\right )} \]

9720

\[ {}y^{\prime \prime } = -\frac {b x y^{\prime }}{\left (x^{2}-1\right ) a}-\frac {\left (c \,x^{2}+d x +e \right ) y}{a \left (x^{2}-1\right )^{2}} \]

9721

\[ {}y^{\prime \prime } = -\frac {\left (b \,x^{2}+c x +d \right ) y}{a \,x^{2} \left (-1+x \right )^{2}} \]

9722

\[ {}y^{\prime \prime } = -\frac {2 y^{\prime }}{x}-\frac {c y}{x^{2} \left (a x +b \right )^{2}} \]

9723

\[ {}y^{\prime \prime } = -\frac {y}{\left (a x +b \right )^{4}} \]

9724

\[ {}y^{\prime \prime } = -\frac {A y}{\left (x^{2} a +b x +c \right )^{2}} \]

9725

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x^{4}}+\frac {y}{x^{5}} \]

9726

\[ {}y^{\prime \prime } = -\frac {\left (3 x^{2}-1\right ) y^{\prime }}{\left (x^{2}-1\right ) x}-\frac {\left (x^{2}-1-\left (2 v +1\right )^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \]

9727

\[ {}y^{\prime \prime } = \frac {\left (3 x +1\right ) y^{\prime }}{\left (-1+x \right ) \left (1+x \right )}-\frac {36 \left (1+x \right )^{2} y}{\left (-1+x \right )^{2} \left (3 x +5\right )^{2}} \]

9728

\[ {}y^{\prime \prime } = \frac {y^{\prime }}{x}-\frac {a y}{x^{6}} \]

9729

\[ {}y^{\prime \prime } = -\frac {\left (3 x^{2}+a \right ) y^{\prime }}{x^{3}}-\frac {b y}{x^{6}} \]

9730

\[ {}y^{\prime \prime } = -\frac {\left (\left (1-4 a \right ) x^{2}-1\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (\left (-v^{2}+x^{2}\right ) \left (x^{2}-1\right )^{2}+4 a \left (1+a \right ) x^{4}-2 a \,x^{2} \left (x^{2}-1\right )\right ) y}{x^{2} \left (x^{2}-1\right )^{2}} \]