3.1.25 Problems 2401 to 2500

Table 3.49: First order ode

#

ODE

Mathematica

Maple

4279

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+a = 0 \]

4280

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

4281

\[ {}x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \]

4282

\[ {}2 x {y^{\prime }}^{3}-3 y {y^{\prime }}^{2}-x = 0 \]

4283

\[ {}4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}-x +3 y = 0 \]

4284

\[ {}8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y = 0 \]

4285

\[ {}x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \]

4286

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{3}+b x \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-y^{\prime }-b x = 0 \]

4287

\[ {}x {y^{\prime }}^{3}-3 y {y^{\prime }}^{2} x^{2}+x \left (x^{5}+3 y^{2}\right ) y^{\prime }-2 x^{5} y-y^{3} = 0 \]

4288

\[ {}2 x^{3} {y^{\prime }}^{3}+6 y {y^{\prime }}^{2} x^{2}-\left (1-6 x y\right ) y y^{\prime }+2 y^{3} = 0 \]

4289

\[ {}{y^{\prime }}^{3} x^{4}-y {y^{\prime }}^{2} x^{3}-y^{2} y^{\prime } x^{2}+x y^{3} = 1 \]

4290

\[ {}x^{6} {y^{\prime }}^{3}-x y^{\prime }-y = 0 \]

4291

\[ {}y {y^{\prime }}^{3}-3 x y^{\prime }+3 y = 0 \]

4292

\[ {}2 y {y^{\prime }}^{3}-3 x y^{\prime }+2 y = 0 \]

4293

\[ {}\left (2 y+x \right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (y+2 x \right ) y^{\prime } = 0 \]

4294

\[ {}y^{2} {y^{\prime }}^{3}-x y^{\prime }+y = 0 \]

4295

\[ {}y^{2} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

4296

\[ {}4 y^{2} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0 \]

4297

\[ {}16 y^{2} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

4298

\[ {}x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y = 0 \]

4299

\[ {}y^{3} {y^{\prime }}^{3}-\left (1-3 x \right ) y^{2} {y^{\prime }}^{2}+3 x^{2} y y^{\prime }+x^{3}-y^{2} = 0 \]

4300

\[ {}y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0 \]

4301

\[ {}{y^{\prime }}^{4} = \left (y-a \right )^{3} \left (y-b \right )^{2} \]

4302

\[ {}{y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{2} = 0 \]

4303

\[ {}{y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{3} = 0 \]

4304

\[ {}{y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{3} \left (y-c \right )^{2} = 0 \]

4305

\[ {}{y^{\prime }}^{4}+x y^{\prime }-3 y = 0 \]

4306

\[ {}{y^{\prime }}^{4}-4 y {y^{\prime }}^{2} x^{2}+16 y^{2} y^{\prime } x -16 y^{3} = 0 \]

4307

\[ {}{y^{\prime }}^{4}+4 y {y^{\prime }}^{3}+6 y^{2} {y^{\prime }}^{2}-\left (1-4 y^{3}\right ) y^{\prime }-\left (3-y^{3}\right ) y = 0 \]

4308

\[ {}2 {y^{\prime }}^{4}-y y^{\prime }-2 = 0 \]

4309

\[ {}x {y^{\prime }}^{4}-2 y {y^{\prime }}^{3}+12 x^{3} = 0 \]

4310

\[ {}3 {y^{\prime }}^{5}-y y^{\prime }+1 = 0 \]

4311

\[ {}{y^{\prime }}^{6} = \left (y-a \right )^{4} \left (y-b \right )^{3} \]

4312

\[ {}{y^{\prime }}^{6}+f \left (x \right ) \left (y-a \right )^{4} \left (y-b \right )^{3} = 0 \]

4313

\[ {}{y^{\prime }}^{6}+f \left (x \right ) \left (y-a \right )^{5} \left (y-b \right )^{3} = 0 \]

4314

\[ {}{y^{\prime }}^{6}+f \left (x \right ) \left (y-a \right )^{5} \left (y-b \right )^{4} = 0 \]

4315

\[ {}x^{2} \left ({y^{\prime }}^{6}+3 y^{4}+3 y^{2}+1\right ) = a^{2} \]

4316

\[ {}2 \sqrt {a y^{\prime }}+x y^{\prime }-y = 0 \]

4317

\[ {}\left (x -y\right ) \sqrt {y^{\prime }} = a \left (1+y^{\prime }\right ) \]

4318

\[ {}2 \left (y+1\right )^{\frac {3}{2}}+3 x y^{\prime }-3 y = 0 \]

4319

\[ {}\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } = x \]

4320

\[ {}\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } = y \]

4321

\[ {}\sqrt {1+{y^{\prime }}^{2}} = x y^{\prime } \]

4322

\[ {}\sqrt {a^{2}+b^{2} {y^{\prime }}^{2}}+x y^{\prime }-y = 0 \]

4323

\[ {}a \sqrt {1+{y^{\prime }}^{2}}+x y^{\prime }-y = 0 \]

4324

\[ {}a x \sqrt {1+{y^{\prime }}^{2}}+x y^{\prime }-y = 0 \]

4325

\[ {}\sqrt {\left (x^{2} a +y^{2}\right ) \left (1+{y^{\prime }}^{2}\right )}-y y^{\prime }-a x = 0 \]

4326

\[ {}a \left (1+{y^{\prime }}^{3}\right )^{\frac {1}{3}}+x y^{\prime }-y = 0 \]

4327

\[ {}\cos \left (y^{\prime }\right )+x y^{\prime } = y \]

4328

\[ {}a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0 \]

4329

\[ {}\sin \left (y^{\prime }\right )+y^{\prime } = x \]

4330

\[ {}y^{\prime } \sin \left (y^{\prime }\right )+\cos \left (y^{\prime }\right ) = y \]

4331

\[ {}{y^{\prime }}^{2} \left (x +\sin \left (y^{\prime }\right )\right ) = y \]

4332

\[ {}\left (1+{y^{\prime }}^{2}\right ) \sin \left (-y+x y^{\prime }\right )^{2} = 1 \]

4333

\[ {}\left (1+{y^{\prime }}^{2}\right ) \left (\arctan \left (y^{\prime }\right )+a x \right )+y^{\prime } = 0 \]

4334

\[ {}{\mathrm e}^{y^{\prime }-y}-{y^{\prime }}^{2}+1 = 0 \]

4335

\[ {}\ln \left (y^{\prime }\right )+x y^{\prime }+a = 0 \]

4336

\[ {}\ln \left (y^{\prime }\right )+x y^{\prime }+a = y \]

4337

\[ {}\ln \left (y^{\prime }\right )+x y^{\prime }+a +b y = 0 \]

4338

\[ {}\ln \left (y^{\prime }\right )+4 x y^{\prime }-2 y = 0 \]

4339

\[ {}\ln \left (y^{\prime }\right )+a \left (-y+x y^{\prime }\right ) = 0 \]

4340

\[ {}a \left (\ln \left (y^{\prime }\right )-y^{\prime }\right )-x +y = 0 \]

4341

\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-x y = 0 \]

4342

\[ {}y^{\prime } \ln \left (y^{\prime }\right )-\left (1+x \right ) y^{\prime }+y = 0 \]

4343

\[ {}y^{\prime } \ln \left (y^{\prime }+\sqrt {a +{y^{\prime }}^{2}}\right )-\sqrt {1+{y^{\prime }}^{2}}-x y^{\prime }+y = 0 \]

4344

\[ {}\ln \left (\cos \left (y^{\prime }\right )\right )+y^{\prime } \tan \left (y^{\prime }\right ) = y \]

4345

\[ {}y^{\prime } = \frac {x y}{x^{2}-y^{2}} \]

4346

\[ {}y^{\prime } = \frac {x +y-3}{x -y-1} \]

4347

\[ {}y^{\prime } = \frac {2 x +y-1}{4 x +2 y+5} \]

4348

\[ {}y^{\prime }-\frac {2 y}{1+x} = \left (1+x \right )^{2} \]

4349

\[ {}y^{\prime }+x y = y^{3} x^{3} \]

4350

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

4351

\[ {}x y^{2}+y-x y^{\prime } = 0 \]

4352

\[ {}y^{2} \left (1+{y^{\prime }}^{2}\right ) = R^{2} \]

4353

\[ {}y = x y^{\prime }+\frac {a y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \]

4354

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

4355

\[ {}\left (1+x \right ) y+\left (1-y\right ) x y^{\prime } = 0 \]

4356

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

4357

\[ {}x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2} = 0 \]

4358

\[ {}1+y^{2}-\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{\frac {3}{2}} y^{\prime } = 0 \]

4359

\[ {}\sin \left (x \right ) \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

4360

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

4361

\[ {}\left (y-x \right ) y^{\prime }+y = 0 \]

4362

\[ {}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0 \]

4363

\[ {}x y^{\prime }-y-\sqrt {x^{2}+y^{2}} = 0 \]

4364

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

4365

\[ {}8 y+10 x +\left (7 x +5 y\right ) y^{\prime } = 0 \]

4366

\[ {}2 x -y+1+\left (2 y-1\right ) y^{\prime } = 0 \]

4367

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

4368

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{2 x \left (x^{2}+1\right )} \]

4369

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

4370

\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{\frac {3}{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

4371

\[ {}y^{\prime }+\cos \left (x \right ) y = \frac {\sin \left (2 x \right )}{2} \]

4372

\[ {}\left (x^{2}+1\right ) y^{\prime }+y = \arctan \left (x \right ) \]

4373

\[ {}\left (-x^{2}+1\right ) z^{\prime }-x z = a x z^{2} \]

4374

\[ {}3 z^{2} z^{\prime }-a z^{3} = 1+x \]

4375

\[ {}z^{\prime }+2 x z = 2 a \,x^{3} z^{3} \]

4376

\[ {}z^{\prime }+z \cos \left (x \right ) = z^{n} \sin \left (2 x \right ) \]

4377

\[ {}x y^{\prime }+y = y^{2} \ln \left (x \right ) \]

4378

\[ {}x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime } = 0 \]