# |
ODE |
Mathematica |
Maple |
\[ {}x^{\prime } = 6 t \left (x-1\right )^{\frac {2}{3}} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 t x} \] |
✓ |
✓ |
|
\[ {}x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t} = {\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = 2 t^{3} x-6 \] |
✓ |
✓ |
|
\[ {}\cos \left (t \right ) x^{\prime }-2 x \sin \left (x\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime } = t -x^{2} \] |
✓ |
✓ |
|
\[ {}7 t^{2} x^{\prime } = 3 x-2 t \] |
✓ |
✓ |
|
\[ {}x x^{\prime } = 1-t x \] |
✓ |
✓ |
|
\[ {}{x^{\prime }}^{2}+t x = \sqrt {t +1} \] |
✗ |
✗ |
|
\[ {}x^{\prime } = -\frac {2 x}{t}+t \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = {\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}x^{\prime }+2 t x = {\mathrm e}^{-t^{2}} \] |
✓ |
✓ |
|
\[ {}t x^{\prime } = -x+t^{2} \] |
✓ |
✓ |
|
\[ {}\theta ^{\prime } = -a \theta +{\mathrm e}^{b t} \] |
✓ |
✓ |
|
\[ {}\left (t^{2}+1\right ) x^{\prime } = -3 t x+6 t \] |
✓ |
✓ |
|
\[ {}x^{\prime }+\frac {5 x}{t} = t +1 \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \left (a +\frac {b}{t}\right ) x \] |
✓ |
✓ |
|
\[ {}R^{\prime }+\frac {R}{t} = \frac {2}{t^{2}+1} \] |
✓ |
✓ |
|
\[ {}N^{\prime } = N-9 \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}\cos \left (\theta \right ) v^{\prime }+v = 3 \] |
✗ |
✗ |
|
\[ {}R^{\prime } = \frac {R}{t}+t \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y = \sqrt {t +1} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = 2 t x \] |
✓ |
✓ |
|
\[ {}x^{\prime }+\frac {{\mathrm e}^{-t} x}{t} = t \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \left (t +x\right )^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = a x+b \] |
✓ |
✓ |
|
\[ {}x^{\prime }+p \left (t \right ) x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = x \left (1+x \,{\mathrm e}^{t}\right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}} \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime }+2 t y-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime } = a x+b x^{3} \] |
✓ |
✓ |
|
\[ {}w^{\prime } = t w+t^{3} w^{3} \] |
✓ |
✓ |
|
\[ {}x^{3}+3 t x^{2} x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}t^{3}+\frac {x}{t}+\left (x^{2}+\ln \left (t \right )\right ) x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime } = -\frac {\sin \left (x\right )-x \sin \left (t \right )}{t \cos \left (x\right )+\cos \left (t \right )} \] |
✓ |
✓ |
|
\[ {}x+3 t x^{2} x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}-t^{2} x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}t \cot \left (x\right ) x^{\prime } = -2 \] |
✓ |
✓ |
|
\[ {}x^{\prime }+5 x = \operatorname {Heaviside}\left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime }+x = \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime } = 2 x+\operatorname {Heaviside}\left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime }+4 x = \cos \left (2 t \right ) \operatorname {Heaviside}\left (2 \pi -t \right ) \] |
✓ |
✗ |
|
\[ {}x^{\prime } = x-2 \operatorname {Heaviside}\left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime } = -x+\operatorname {Heaviside}\left (-1+t \right )-\operatorname {Heaviside}\left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime }+3 x = \delta \left (-1+t \right )+\operatorname {Heaviside}\left (t -4\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 1+x \] |
✓ |
✓ |
|
\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = y^{3} x^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 x y = 8 x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = 6 \,{\mathrm e}^{x}+4 \,{\mathrm e}^{-2 x} x \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2} \sin \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}}{-2+x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}3 x +2 y+\left (y+2 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+3+\left (2 x y-4\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y+1+\left (x^{2}+4 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2} y+2-\left (x^{3}+y\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}6 x y+2 y^{2}-5+\left (3 x^{2}+4 x y-6\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \sec \left (x \right )^{2}+\sec \left (x \right ) \tan \left (x \right )+\left (\tan \left (x \right )+2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x}{y^{2}}+x +\left (\frac {x^{2}}{y^{3}}+y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {2 y^{\frac {3}{2}}+1}{x^{\frac {1}{3}}}+\left (3 \sqrt {x}\, \sqrt {y}-1\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}2 x y-3+\left (x^{2}+4 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{2} x^{2}-y^{3}+2 x +\left (2 x^{3} y-3 x y^{2}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y \sin \left (x \right ) \cos \left (x \right )+y^{2} \sin \left (x \right )+\left (\sin \left (x \right )^{2}-2 \cos \left (x \right ) y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x} y+2 \,{\mathrm e}^{x}+y^{2}+\left ({\mathrm e}^{x}+2 x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {3-y}{x^{2}}+\frac {\left (y^{2}-2 x \right ) y^{\prime }}{x y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {1+8 x y^{\frac {2}{3}}}{x^{\frac {2}{3}} y^{\frac {1}{3}}}+\frac {\left (2 x^{\frac {4}{3}} y^{\frac {2}{3}}-x^{\frac {1}{3}}\right ) y^{\prime }}{y^{\frac {4}{3}}} = 0 \] |
✗ |
✓ |
|
\[ {}4 x +3 y^{2}+2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+2 x y-x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y+x \left (x^{2}+y^{2}\right )^{2}+\left (y \left (x^{2}+y^{2}\right )^{2}-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}4 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y+2 x +y+2+\left (x^{2}+2 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 r \left (s^{2}+1\right )+\left (r^{4}+1\right ) s^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\csc \left (y\right )+\sec \left (x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\tan \left (\theta \right )+2 r \theta ^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left ({\mathrm e}^{v}+1\right ) \cos \left (u \right )+{\mathrm e}^{v} \left (1+\sin \left (u \right )\right ) v^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +4\right ) \left (1+y^{2}\right )+y \left (x^{2}+3 x +2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +y-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y+3 y^{2}-\left (2 x y+x^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}v^{3}+\left (u^{3}-u v^{2}\right ) v^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \tan \left (\frac {y}{x}\right )+y-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{3}+y^{2} \sqrt {x^{2}+y^{2}}-x y \sqrt {x^{2}+y^{2}}\, y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sqrt {x +y}+\sqrt {x -y}+\left (\sqrt {x -y}-\sqrt {x +y}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y+2+y \left (x +4\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}8 \cos \left (y\right )^{2}+\csc \left (x \right )^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (3 x +8\right ) \left (y^{2}+4\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+3 y^{2}-2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x -5 y+\left (4 x -y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2}+9 x y+5 y^{2}-\left (6 x^{2}+4 x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +2 y+\left (2 x -y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x -y-\left (x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|