3.1.61 Problems 6001 to 6100

Table 3.121: First order ode




#

ODE

Mathematica

Maple





13037

y=ty





13038

y=3y+e7t





13039

y=tyt2+1





13040

y=5y+sin(3t)





13041

y=t+2yt+1





13042

y=3+y2





13043

y=2yy2





13044

y=3y+e2t+t2





13045

x=tx





13046

y=2y+cos(4t)





13047

y=3y+2e3t





13048

y=t2y3+y3





13049

y+5y=3e5t





13050

y=2ty+3tet2





13051

y=(t+1)2(y+1)2





13052

y=2ty2+3t2y2





13053

y=1y2





13054

y=t2y+t3y





13055

y=y22y+1





13056

y=(y2)(y+1cos(t))





13057

y=(y1)(y2)(yet2)





13058

y=t2y+1+y+t2





13059

y=2y+1t





13060

y=3y2





13243

y=3sin(x)





13244

y=3sin(y)





13245

y+4y=e2x





13246

xy=arcsin(x2)





13247

yy=2x





13253

y=4x3





13254

y=20e4x





13255

xy+x=2





13256

x+4y=1





13257

y=xcos(x2)





13258

y=xcos(x)





13259

x=(x29)y





13260

1=(x29)y





13261

1=x29y





13265

y=40e2xx





13266

(x+6)13y=1





13267

y=1+x1+x





13268

xy+2=x





13269

ycos(x)sin(x)=0





13270

(x2+1)y=1





13272

y=sin(x2)





13273

y=sin(x2)





13274

y=sin(x2)





13275

y=3x+3





13276

y=3x+3





13277

y=3x+3





13278

y=3x+3





13279

y=xex2





13280

y=xx2+5





13281

y=1x2+1





13282

y=e9x2





13283

xy=sin(x)





13284

xy=sin(x2)





13285

y={0x<010x





13286

y={0x<111x





13287

y={0x<111x<202x





13288

y+3xy=6x





13289

sin(x+y)yy=0





13290

yy3=8





13291

x2y+xy2=x





13292

yy2=x





13293

y325y+y=0





13294

(2+x)y=3+y





13295

(y2)y=x3





13296

y+2yy2=2





13297

y+(8x)yy2=8x





13298

y=2y





13299

y=3y2y2sin(x)





13300

y=3xysin(x)





13301

xy=(xy)2





13302

y=x2+1





13303

y+4y=8





13304

y+xy=4x





13305

y+4y=x2





13306

y=xy3x2y+6





13307

y=sin(x+y)





13308

yy=ex3y2





13309

y=xy





13310

y=y2+9





13311

xyy=y2+9





13312

y=1+y2x2+1





13313

cos(y)y=sin(x)





13314

y=e2x3y





13315

y=xy





13316

y=2x1+2xyy





13317

yy=xy2+x





13318

yy=3xy2+9x





13319

y=xy4x





13320

y4y=2





13321

yy=xy29x





13322

y=sin(y)





13323

y=ex+y2





13324

y=200y2y2





13325

y=xy4x





13326

y=xy3x2y+6





13327

y=3y2y2sin(x)