6.206 Problems 20501 to 20600

Table 6.411: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

20501

\[ {} {y^{\prime }}^{2}-2 y^{\prime } \cosh \left (x \right )+1 = 0 \]

20502

\[ {} y^{\prime } \left (y^{\prime }-y\right ) = x \left (x +y\right ) \]

20503

\[ {} y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

20504

\[ {} x +y {y^{\prime }}^{2} = \left (x y+1\right ) y^{\prime } \]

20505

\[ {} x {y^{\prime }}^{2}+\left (y-x \right ) y^{\prime }-y = 0 \]

20506

\[ {} {y^{\prime }}^{3}-a \,x^{4} = 0 \]

20507

\[ {} {y^{\prime }}^{2}+x y^{\prime }+y y^{\prime }+x y = 0 \]

20508

\[ {} {y^{\prime }}^{3}-y^{\prime } \left (x^{2}+x y+y^{2}\right )+x y \left (x +y\right ) = 0 \]

20509

\[ {} \left (y^{\prime }+y+x \right ) \left (x y^{\prime }+x +y\right ) \left (y^{\prime }+2 x \right ) = 0 \]

20510

\[ {} x^{2} {y^{\prime }}^{3}+y \left (x^{2} y+1\right ) {y^{\prime }}^{2}+y^{2} y^{\prime } = 0 \]

20511

\[ {} x^{2} {y^{\prime }}^{2}+y y^{\prime } x -6 y^{2} = 0 \]

20512

\[ {} {y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

20513

\[ {} \left (2-3 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

20514

\[ {} y = 3 x +a \ln \left (y^{\prime }\right ) \]

20515

\[ {} {y^{\prime }}^{2}-y y^{\prime }+x = 0 \]

20516

\[ {} y = x +a \arctan \left (y^{\prime }\right ) \]

20517

\[ {} 3 {y^{\prime }}^{5}-y y^{\prime }+1 = 0 \]

20518

\[ {} y = x {y^{\prime }}^{2}+y^{\prime } \]

20519

\[ {} x {y^{\prime }}^{2}+a x = 2 y y^{\prime } \]

20520

\[ {} {y^{\prime }}^{3}+y^{\prime } = {\mathrm e}^{y} \]

20521

\[ {} y = \sin \left (y^{\prime }\right )-y^{\prime } \cos \left (y^{\prime }\right ) \]

20522

\[ {} y = y^{\prime } \sin \left (x \right )+\cos \left (x \right ) \]

20523

\[ {} y = \ln \left (\cos \left (y^{\prime }\right )\right )+y^{\prime } \tan \left (y^{\prime }\right ) \]

20524

\[ {} x = y y^{\prime }-{y^{\prime }}^{2} \]

20525

\[ {} \left (2 x -b \right ) y^{\prime } = y-a y {y^{\prime }}^{2} \]

20526

\[ {} x = y+a \ln \left (y^{\prime }\right ) \]

20527

\[ {} y {y^{\prime }}^{2}+2 x y^{\prime } = y \]

20528

\[ {} \left (1+{y^{\prime }}^{2}\right ) x = 1 \]

20529

\[ {} x^{2} = a^{2} \left (1+{y^{\prime }}^{2}\right ) \]

20530

\[ {} y = x y^{\prime }+\frac {a}{y^{\prime }} \]

20531

\[ {} y = x y^{\prime }+y^{\prime }-{y^{\prime }}^{3} \]

20532

\[ {} y = x y^{\prime }+a y^{\prime } \left (1-y^{\prime }\right ) \]

20533

\[ {} y = x y^{\prime }+\sqrt {1+{y^{\prime }}^{2}} \]

20534

\[ {} y = x y^{\prime }+\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \]

20535

\[ {} \left (y-x y^{\prime }\right ) \left (y^{\prime }-1\right ) = y^{\prime } \]

20536

\[ {} x {y^{\prime }}^{2}-y y^{\prime }+a = 0 \]

20537

\[ {} y = y^{\prime } \left (x -b \right )+\frac {a}{y^{\prime }} \]

20538

\[ {} y = x y^{\prime }+{y^{\prime }}^{3} \]

20539

\[ {} 4 y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

20540

\[ {} y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

20541

\[ {} x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} = a \]

20542

\[ {} x^{2} {y^{\prime }}^{2}-2 y y^{\prime } x +2 y^{2} = x^{2} \]

20543

\[ {} y = x y^{\prime }+x \sqrt {1+{y^{\prime }}^{2}} \]

20544

\[ {} x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right ) = 0 \]

20545

\[ {} y = \frac {2 a {y^{\prime }}^{2}}{\left (1+{y^{\prime }}^{2}\right )^{2}} \]

20546

\[ {} \left (x y^{\prime }-y\right )^{2} = a \left (1+{y^{\prime }}^{2}\right ) \left (x^{2}+y^{2}\right )^{{3}/{2}} \]

20547

\[ {} 4 x {y^{\prime }}^{2}+4 y y^{\prime } = y^{4} \]

20548

\[ {} 2 {y^{\prime }}^{3}-\left (2 x +4 \sin \left (x \right )-\cos \left (x \right )\right ) {y^{\prime }}^{2}-\left (x \cos \left (x \right )-4 x \sin \left (x \right )+\sin \left (2 x \right )\right ) y^{\prime }+\sin \left (2 x \right ) x = 0 \]

20549

\[ {} \left (x y^{\prime }-y\right )^{2} = {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+1 \]

20550

\[ {} y-x y^{\prime } = y y^{\prime }+x \]

20551

\[ {} a^{2} y {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

20552

\[ {} x^{2} \left (y-x y^{\prime }\right ) = y {y^{\prime }}^{2} \]

20553

\[ {} \left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0 \]

20554

\[ {} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 y y^{\prime } x +y^{2}+a^{4} = 0 \]

20555

\[ {} y y^{\prime }+x = a {y^{\prime }}^{2} \]

20556

\[ {} x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 x y = 0 \]

20557

\[ {} 2 y = x y^{\prime }+\frac {a}{y^{\prime }} \]

20558

\[ {} y = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \]

20559

\[ {} \left (a {y^{\prime }}^{2}-b \right ) x y+\left (b \,x^{2}-a y^{2}+c \right ) y^{\prime } = 0 \]

20560

\[ {} y = a y^{\prime }+b {y^{\prime }}^{2} \]

20561

\[ {} {y^{\prime }}^{3}-\left (y+2 x -{\mathrm e}^{x -y}\right ) {y^{\prime }}^{2}+\left (2 x y-2 x \,{\mathrm e}^{x -y}-y \,{\mathrm e}^{x -y}\right ) y^{\prime }+2 x y \,{\mathrm e}^{x -y} = 0 \]

20562

\[ {} \left (1-3 x^{2} y+6 y^{2}\right ) y^{\prime } = 3 x y^{2}-x^{2} \]

20563

\[ {} \left (x^{2}+1\right ) {y^{\prime }}^{2}-2 y y^{\prime } x +y^{2} = 1 \]

20564

\[ {} \left (x^{3} y^{3}+x^{2} y^{2}+x y+1\right ) y+\left (x^{3} y^{3}-x^{2} y^{2}-x y+1\right ) x y^{\prime } = 0 \]

20565

\[ {} \left (\cos \left (\frac {y}{x}\right ) x +y \sin \left (\frac {y}{x}\right )\right ) y = \left (y \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right ) x \right ) x y^{\prime } \]

20566

\[ {} \left (x y^{\prime }-y\right ) \left (y y^{\prime }+x \right ) = h^{2} y^{\prime } \]

20567

\[ {} x^{2} y^{2}-3 y y^{\prime } x = 2 y^{2}+x^{3} \]

20568

\[ {} x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

20569

\[ {} y^{2}-2 y y^{\prime } x +{y^{\prime }}^{2} \left (x^{2}-1\right ) = m \]

20570

\[ {} y = x y^{\prime }-{y^{\prime }}^{2} \]

20571

\[ {} 4 {y^{\prime }}^{2} = 9 x \]

20572

\[ {} 4 x \left (x -1\right ) \left (x -2\right ) {y^{\prime }}^{2}-\left (3 x^{2}-6 x +2\right )^{2} = 0 \]

20573

\[ {} \left (8 {y^{\prime }}^{3}-27\right ) x = \frac {12 {y^{\prime }}^{2}}{x} \]

20574

\[ {} 3 y = 2 x y^{\prime }-\frac {2 {y^{\prime }}^{2}}{x} \]

20575

\[ {} {y^{\prime }}^{2}+y^{2} = 1 \]

20576

\[ {} \left (2-3 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

20577

\[ {} 4 x {y^{\prime }}^{2} = \left (3 x -1\right )^{2} \]

20578

\[ {} x {y^{\prime }}^{2}-\left (x -a \right )^{2} = 0 \]

20579

\[ {} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

20580

\[ {} 3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

20581

\[ {} {y^{\prime }}^{2}+2 x^{3} y^{\prime }-4 x^{2} y = 0 \]

20582

\[ {} y^{2} \left (y-x y^{\prime }\right ) = x^{4} {y^{\prime }}^{2} \]

20583

\[ {} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 y y^{\prime } x -x^{2} = 0 \]

20584

\[ {} {y^{\prime }}^{4} = 4 y \left (-2 y+x y^{\prime }\right )^{2} \]

20585

\[ {} \left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \]

20586

\[ {} y+x^{2} = {y^{\prime }}^{2} \]

20587

\[ {} {y^{\prime }}^{3} = y^{4} \left (x y^{\prime }+y\right ) \]

20588

\[ {} \left (1-y^{\prime }\right )^{2}-{\mathrm e}^{-2 y} = {\mathrm e}^{-2 x} {y^{\prime }}^{2} \]

20589

\[ {} a x y {y^{\prime }}^{2}+\left (x^{2}-a y^{2}-b \right ) y^{\prime }-x y = 0 \]

20590

\[ {} {y^{\prime }}^{2} = \left (4 y+1\right ) \left (y^{\prime }-y\right ) \]

20591

\[ {} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 y y^{\prime } x +b^{2}-y^{2} = 0 \]

20592

\[ {} x y {y^{\prime }}^{2}-\left (y^{2}+x^{2}-1\right ) y^{\prime }+x y = 0 \]

20593

\[ {} x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}-h^{2}\right ) y^{\prime }-x y = 0 \]

20594

\[ {} 8 x {y^{\prime }}^{3} = y \left (12 {y^{\prime }}^{2}-9\right ) \]

20595

\[ {} 4 {y^{\prime }}^{2} x^{2} \left (x -1\right )-4 y^{\prime } x y \left (4 x -3\right )+\left (16 x -9\right ) y^{2} = 0 \]

20596

\[ {} \left (x^{2} y^{\prime }+y^{2}\right ) \left (x y^{\prime }+y\right ) = \left (1+y^{\prime }\right )^{2} \]

20597

\[ {} y-x y^{\prime } = a \left (y^{\prime }+y^{2}\right ) \]

20598

\[ {} y-x y^{\prime } = b \left (1+x^{2} y^{\prime }\right ) \]

20599

\[ {} \left (x y^{\prime }-y\right ) \left (x -y y^{\prime }\right ) = 2 y^{\prime } \]

20600

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]