6.208 Problems 20701 to 20800

Table 6.415: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

20701

\[ {} x^{2} y^{\prime \prime } = \sqrt {m \,x^{2} {y^{\prime }}^{3}+n y^{2}} \]

20702

\[ {} x^{4} y^{\prime \prime } = \left (x^{3}+2 x y\right ) y^{\prime }-4 y^{2} \]

20703

\[ {} x^{4} y^{\prime \prime }-x^{3} y^{\prime } = x^{2} {y^{\prime }}^{2}-4 y^{2} \]

20704

\[ {} x^{2} y^{\prime \prime }+4 y^{2}-6 y = x^{4} {y^{\prime }}^{2} \]

20705

\[ {} y^{\prime \prime } = {\mathrm e}^{y} \]

20706

\[ {} y^{\prime \prime }+a^{2} y = 0 \]

20707

\[ {} a y^{\prime \prime \prime } = y^{\prime \prime } \]

20708

\[ {} x^{2} y^{\prime \prime \prime \prime }+1 = 0 \]

20709

\[ {} y^{\prime \prime \prime } = \sin \left (x \right )^{2} \]

20710

\[ {} y^{\prime \prime } = \frac {1}{\sqrt {a y}} \]

20711

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

20712

\[ {} -a y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

20713

\[ {} \sin \left (y\right )^{3} y^{\prime \prime } = \cos \left (y\right ) \]

20714

\[ {} {\mathrm e}^{x} \left (x y^{\prime \prime }-y^{\prime }\right ) = x^{3} \]

20715

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

20716

\[ {} 2 x y^{\prime \prime } y^{\prime \prime \prime } = -a^{2}+{y^{\prime \prime }}^{2} \]

20717

\[ {} y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

20718

\[ {} \left (x^{3}-4 x \right ) y^{\prime \prime \prime }+\left (9 x^{2}-4\right ) y^{\prime \prime }+18 x y^{\prime }+6 y = 6 \]

20719

\[ {} x y-x^{2} y^{\prime }+y^{\prime \prime } = x \]

20720

\[ {} 3 y-\left (x +3\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

20721

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime } = y+{\mathrm e}^{x} \]

20722

\[ {} \left (1+x \right ) y^{\prime \prime }-2 \left (x +3\right ) y^{\prime }+\left (x +5\right ) y = {\mathrm e}^{x} \]

20723

\[ {} \left (3-x \right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

20724

\[ {} -y+x y^{\prime }+y^{\prime \prime } = X \]

20725

\[ {} y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime }+x y = 0 \]

20726

\[ {} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

20727

\[ {} x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (x +2\right ) y = x^{3} {\mathrm e}^{x} \]

20728

\[ {} y^{\prime \prime }-a x y^{\prime }+a^{2} \left (x -1\right ) y = 0 \]

20729

\[ {} \left (2 x^{3}-a \right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 x y = 0 \]

20730

\[ {} y^{\prime \prime }+4 x y^{\prime }+4 x^{2} y = 0 \]

20731

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0 \]

20732

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y \]

20733

\[ {} y^{\prime \prime }-2 b x y^{\prime }+y b^{2} x^{2} = 0 \]

20734

\[ {} y^{\prime \prime }-2 b x y^{\prime }+y b^{2} x^{2} = x \]

20735

\[ {} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{3}+6 x^{2}+4\right ) y = 0 \]

20736

\[ {} x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y = 0 \]

20737

\[ {} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = {\mathrm e}^{x} \sec \left (x \right ) \]

20738

\[ {} -\left (a^{2}+1\right ) y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

20739

\[ {} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

20740

\[ {} y^{\prime \prime }+2 n \cot \left (n x \right ) y^{\prime }+\left (m^{2}-n^{2}\right ) y = 0 \]

20741

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

20742

\[ {} x^{2} y^{\prime \prime }-2 n x y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y = 0 \]

20743

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}} \]

20744

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0 \]

20745

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

20746

\[ {} \left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y = 0 \]

20747

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+m^{2} y = 0 \]

20748

\[ {} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }-\sin \left (x \right )^{2} y = 0 \]

20749

\[ {} \sin \left (x \right )^{2} y^{\prime \prime }+\sin \left (x \right ) \cos \left (x \right ) y^{\prime }+y = 0 \]

20750

\[ {} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

20751

\[ {} y^{\prime \prime }+\left (\tan \left (x \right )-1\right )^{2} y^{\prime }-n \left (n -1\right ) y \sec \left (x \right )^{4} = 0 \]

20752

\[ {} y^{\prime \prime }+\left (3 \sin \left (x \right )-\cot \left (x \right )\right ) y^{\prime }+2 \sin \left (x \right )^{2} y = 0 \]

20753

\[ {} 3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y = 0 \]

20754

\[ {} x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-2 y = x^{2} \]

20755

\[ {} x^{2} y^{\prime \prime }+y^{\prime }-\left (x^{2}+1\right ) y = {\mathrm e}^{-x} \]

20756

\[ {} \left (x +2\right ) y^{\prime \prime }-\left (2 x +5\right ) y^{\prime }+2 y = {\mathrm e}^{x} \left (1+x \right ) \]

20757

\[ {} y^{\prime \prime }+y = x \]

20758

\[ {} y^{\prime \prime }+y = \csc \left (x \right ) \]

20759

\[ {} 4 y+y^{\prime \prime } = 4 \tan \left (2 x \right ) \]

20760

\[ {} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = \left (1-x \right )^{2} \]

20761

\[ {} -y+y^{\prime \prime } = \frac {2}{{\mathrm e}^{x}+1} \]

20762

\[ {} -\left (x^{2}+1\right ) y-4 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = x \]

20763

\[ {} 2 \left (1+x \right ) y-2 x \left (1+x \right ) y^{\prime }+x^{2} y^{\prime \prime } = -4 x^{3} \]

20764

\[ {} x y^{\prime }-y = \left (x -1\right ) \left (y^{\prime \prime }-x +1\right ) \]

20765

\[ {} \left (x y^{\prime }-y\right )^{2}+x^{2} y y^{\prime \prime } = 0 \]

20766

\[ {} 2 \left (1+x \right ) y-2 x \left (1+x \right ) y^{\prime }+x^{2} y^{\prime \prime } = x^{3} \]

20767

\[ {} \left (x^{2}+a \right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

20768

\[ {} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

20769

\[ {} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = x^{3}+3 x \]

20770

\[ {} \left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a} = 0 \]

20771

\[ {} x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

20772

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\frac {a^{2} y}{-x^{2}+1} = 0 \]

20773

\[ {} \left (2 x -1\right ) y^{\prime \prime }-2 y^{\prime }+\left (3-2 x \right ) y = 2 \,{\mathrm e}^{x} \]

20774

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = 8 x^{3} \]

20775

\[ {} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+5\right ) y = x \,{\mathrm e}^{-\frac {x^{2}}{2}} \]

20776

\[ {} x \left (-x^{2}+1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) \left (3 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y = 0 \]

20777

\[ {} y^{\prime \prime }+\left (1-\frac {2}{x^{2}}\right ) y = x^{2} \]

20778

\[ {} \left (x^{3}-2 x^{2}\right ) y^{\prime \prime }+2 x^{2} y^{\prime }-12 \left (x -2\right ) y = 0 \]

20779

\[ {} x y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+\left (x +2\right ) y = \left (x -2\right ) {\mathrm e}^{2 x} \]

20780

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

20781

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

20782

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0 \]

20783

\[ {} x y^{\prime \prime } \left (x \cos \left (x \right )-2 \sin \left (x \right )\right )+\left (x^{2}+2\right ) y^{\prime } \sin \left (x \right )-2 y \left (x \sin \left (x \right )+\cos \left (x \right )\right ) = 0 \]

20784

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

20785

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-\left (4 x^{2}-3 x -5\right ) y^{\prime }+\left (4 x^{2}-6 x -5\right ) y = {\mathrm e}^{2 x} \]

20786

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime } = m^{2} y \]

20787

\[ {} y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x} = 4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \]

20788

\[ {} x y^{\prime \prime }+\left (x^{2}+1\right ) y^{\prime }+2 x y = 2 x \]

20789

\[ {} \left (x +2\right ) y^{\prime \prime }-\left (2 x +5\right ) y^{\prime }+2 y = {\mathrm e}^{x} \left (1+x \right ) \]

20790

\[ {} -y+x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = x \left (-x^{2}+1\right )^{{3}/{2}} \]

20791

\[ {} x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

20792

\[ {} [t x^{\prime }\left (t \right )+y \left (t \right ) = 0, t y^{\prime }\left (t \right )+x \left (t \right ) = 0] \]

20793

\[ {} y-x y^{\prime } = 0 \]

20794

\[ {} \cot \left (y\right )-\tan \left (x \right ) y^{\prime } = 0 \]

20795

\[ {} x^{3}+x y^{2}+a^{2} y+\left (y^{3}+x^{2} y-a^{2} x \right ) y^{\prime } = 0 \]

20796

\[ {} \left (x +2 y^{3}\right ) y^{\prime } = y \]

20797

\[ {} \sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

20798

\[ {} 1+y^{2}-y y^{\prime } x = 0 \]

20799

\[ {} y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0 \]

20800

\[ {} y^{\prime } = \frac {6 x -2 y-7}{2 x +3 y-6} \]