Internal
problem
ID
[8810]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.3
SECOND
ORDER
ODE.
Page
147
Problem
number
:
Example
3.26
Date
solved
:
Tuesday, September 30, 2025 at 05:52:45 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=p*x^2*diff(diff(u(x),x),x)+q*x*diff(u(x),x)+r*u(x) = f(x); dsolve(ode,u(x), singsol=all);
ode=p*x^2*D[u[x],{x,2}]+q*x*D[u[x],x]+r*u[x]==f[x]; ic={}; DSolve[{ode,ic},u[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") p = symbols("p") q = symbols("q") r = symbols("r") u = Function("u") f = Function("f") ode = Eq(p*x**2*Derivative(u(x), (x, 2)) + q*x*Derivative(u(x), x) + r*u(x) - f(x),0) ics = {} dsolve(ode,func=u(x),ics=ics)