Internal
problem
ID
[8820]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.5
HIGHER
ORDER
ODE.
Page
181
Problem
number
:
Example
3.39
Date
solved
:
Tuesday, September 30, 2025 at 05:52:55 PM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+4*diff(diff(diff(y(x),x),x),x)+3*diff(diff(y(x),x),x)-4*diff(y(x),x)-4*y(x) = f(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]+4*D[y[x],{x,3}]+3*D[y[x],{x,2}]-4*D[y[x],x]-4*y[x]==f[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") f = Function("f") ode = Eq(-f(x) - 4*y(x) - 4*Derivative(y(x), x) + 3*Derivative(y(x), (x, 2)) + 4*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)