43.1.2 problem 1 (b)

Internal problem ID [8867]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 1.3 Introduction– Linear equations of First Order. Page 38
Problem number : 1 (b)
Date solved : Tuesday, September 30, 2025 at 05:58:03 PM
CAS classification : [[_2nd_order, _quadrature]]

\begin{align*} y^{\prime \prime }&=2+x \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x) = x+2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {1}{6} x^{3}+x^{2}+c_1 x +c_2 \]
Mathematica. Time used: 0.002 (sec). Leaf size: 22
ode=D[y[x],{x,2}]==2+x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x^3}{6}+x^2+c_2 x+c_1 \end{align*}
Sympy. Time used: 0.033 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + Derivative(y(x), (x, 2)) - 2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x + \frac {x^{3}}{6} + x^{2} \]