43.1.4 problem 2 (a)

Internal problem ID [8869]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 1.3 Introduction– Linear equations of First Order. Page 38
Problem number : 2 (a)
Date solved : Tuesday, September 30, 2025 at 05:58:05 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }+\cos \left (x \right ) y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 11
ode:=diff(y(x),x)+cos(x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-\sin \left (x \right )} \]
Mathematica. Time used: 0.019 (sec). Leaf size: 27
ode=D[y[x],x]+Cos[x]*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \exp \left (\int _1^x-\cos (K[1])dK[1]\right )\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.135 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x)*cos(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- \sin {\left (x \right )}} \]