43.4.6 problem 1(f)

Internal problem ID [8903]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 2. Linear equations with constant coefficients. Page 52
Problem number : 1(f)
Date solved : Tuesday, September 30, 2025 at 05:59:55 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 18
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)+5*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{2 x} \left (c_1 \sin \left (x \right )+c_2 \cos \left (x \right )\right ) \]
Mathematica. Time used: 0.01 (sec). Leaf size: 22
ode=D[y[x],{x,2}]-4*D[y[x],x]+5*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{2 x} (c_2 \cos (x)+c_1 \sin (x)) \end{align*}
Sympy. Time used: 0.088 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(5*y(x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} \sin {\left (x \right )} + C_{2} \cos {\left (x \right )}\right ) e^{2 x} \]