43.7.6 problem 4(g)

Internal problem ID [8931]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 2. Linear equations with constant coefficients. Page 74
Problem number : 4(g)
Date solved : Tuesday, September 30, 2025 at 06:00:16 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }-16 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 29
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-16*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{2 x}+c_2 \,{\mathrm e}^{-2 x}+c_3 \sin \left (2 x \right )+c_4 \cos \left (2 x \right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 36
ode=D[y[x],{x,4}]-16*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^{2 x}+c_3 e^{-2 x}+c_2 \cos (2 x)+c_4 \sin (2 x) \end{align*}
Sympy. Time used: 0.041 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-16*y(x) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 2 x} + C_{2} e^{2 x} + C_{3} \sin {\left (2 x \right )} + C_{4} \cos {\left (2 x \right )} \]